Efficient Polynomial Operations in the Shared-Coefficients Setting

  • Payman Mohassel
  • Matthew Franklin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3958)


We study the design of efficient and private protocols for polynomial operations in the shared-coefficients setting. We propose efficient protocols for polynomial multiplication, division with remainder, polynomial interpolation, polynomial gcd, and a few other operations. All the protocols introduced in this paper are constant-round, and more efficient than the general MPC. The protocols are all composable, and can be combined to perform more complicated functionalities. We focus on using a threshold additively homomorphic public key scheme due to the applications of our protocols. But, our protocols can also be securely computed in the information-theoretic setting. Finally, we mention some applications of our protocols to privacy-preserving set-operations.


secure multi-party computation passive adversary polynomial operations threshold homomorphic encryption privacy-preserving set operations 


  1. [BB89]
    Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in constant number of rounds of interaction. In: Proceedings of ACM PODC, pp. 201–209 (1989) Google Scholar
  2. [BGW88]
    Ben-Or, M., Goldwasser, S., Widgerson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Proceedings of ACM STOC, pp. 1–10 (1988) Google Scholar
  3. [BMR90]
    Beaver, D., Micali, S., Rogaway, P.: The Round Complexity of Secure Protocols. In: Proceedings of 22nd ACM STOC, pp. 503–513 (1990) Google Scholar
  4. [CCD88]
    Chaum, D., Crepeau, C., Damgard, I.: Multi-party unconditionally secure protocols. In: Proceedings of ACM STOC, pp. 11–19 (1988) Google Scholar
  5. [CD01]
    Cramer, R., Damgård, I.: Secure distributed linear algebra in a constant number of rounds. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 119–136. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. [CDN01]
    Cramer, R., Damgård, I., Nielsen, J.: Multiparty computation from threshold homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–300. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. [DFNT05]
    Damgård, I., Fitzi, M., Buus Nielsen, J., Toft, T.: How to split a shared secret into shared bits in constant-round. Cryptology ePrint Archive, Report 2005/140 (2005), http://eprint.iacr.org/
  8. [FIPR05]
    Freedman, M., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–324. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. [FKN94]
    Feige, U., Kilian, J., Naor, M.: A Minimal Model for Secure Computation. In: Proceedings of ACM STOC 1994, pp. 554–563 (1994) Google Scholar
  10. [FNP04]
    Freedman, M., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. [FP00]
    Fouque, P., Pointcheval, D.: Threshold cryptosystems secure against chosen-ciphertext attacks. In: Proceedings of Asiacrypt, pp. 573–584 (2000)Google Scholar
  12. [GG03]
    Von Zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 2nd edn. University Press, Cambridge (2003)MATHGoogle Scholar
  13. [GMW87]
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: Proceedings of the 19th Annual ACM symposium on Theory of Computing, pp. 218–229 (1987) Google Scholar
  14. [GRR98]
    Gennaro, R., Rabin, M., Rabin, T.: Simplified vss and fast-track multiparty computations with applications to threshold cryptography. In: Proceedings of ACM PODC, pp. 101–111 (1998) Google Scholar
  15. [IK97]
    Ishai, Y., Kushilevitz, E.: Private Simultaneous Messages Protocols with Applications. In: Proceedings of 5th Israel Symposium on Theoretical Comp. Sc., pp. 174–183 (1997) Google Scholar
  16. [IK00]
    Ishai, Y., Kushilevitz, E.: Randomizing polynomials: A New Paradigm for Round-efficient Secure Computation. In: Proceedings of FOCS (2000) Google Scholar
  17. [KS05]
    Kissner, L., Song, D.: Privacy preserving set operations. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. [Pai00]
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Proceedings of Asiacrypt, pp. 573–584 (2000) Google Scholar
  19. [Sha79]
    Shamir, A.: How to share a secret. In: CACM, pp. 612–613 (1979) Google Scholar
  20. [Yao82]
    Yao, A.C.: Protocols for secure computation. In: Proceedings of Focs, pp. 160-164 (1982)Google Scholar
  21. [Yao86]
    Yao, A.C.: How to generate and exchange secrets. In: Proceedings of 27th FOCS, pp. 162–167 (1986) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Payman Mohassel
    • 1
  • Matthew Franklin
    • 1
  1. 1.Department of Computer ScienceUniversity of CaliforniaDavisUSA

Personalised recommendations