Efficient Polynomial Operations in the Shared-Coefficients Setting

  • Payman Mohassel
  • Matthew Franklin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3958)

Abstract

We study the design of efficient and private protocols for polynomial operations in the shared-coefficients setting. We propose efficient protocols for polynomial multiplication, division with remainder, polynomial interpolation, polynomial gcd, and a few other operations. All the protocols introduced in this paper are constant-round, and more efficient than the general MPC. The protocols are all composable, and can be combined to perform more complicated functionalities. We focus on using a threshold additively homomorphic public key scheme due to the applications of our protocols. But, our protocols can also be securely computed in the information-theoretic setting. Finally, we mention some applications of our protocols to privacy-preserving set-operations.

Keywords

secure multi-party computation passive adversary polynomial operations threshold homomorphic encryption privacy-preserving set operations 

References

  1. [BB89]
    Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in constant number of rounds of interaction. In: Proceedings of ACM PODC, pp. 201–209 (1989) Google Scholar
  2. [BGW88]
    Ben-Or, M., Goldwasser, S., Widgerson, A.: Completeness theorems for non-cryptographic fault-tolerant distributed computation. In: Proceedings of ACM STOC, pp. 1–10 (1988) Google Scholar
  3. [BMR90]
    Beaver, D., Micali, S., Rogaway, P.: The Round Complexity of Secure Protocols. In: Proceedings of 22nd ACM STOC, pp. 503–513 (1990) Google Scholar
  4. [CCD88]
    Chaum, D., Crepeau, C., Damgard, I.: Multi-party unconditionally secure protocols. In: Proceedings of ACM STOC, pp. 11–19 (1988) Google Scholar
  5. [CD01]
    Cramer, R., Damgård, I.: Secure distributed linear algebra in a constant number of rounds. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 119–136. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  6. [CDN01]
    Cramer, R., Damgård, I., Nielsen, J.: Multiparty computation from threshold homomorphic encryption. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 280–300. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  7. [DFNT05]
    Damgård, I., Fitzi, M., Buus Nielsen, J., Toft, T.: How to split a shared secret into shared bits in constant-round. Cryptology ePrint Archive, Report 2005/140 (2005), http://eprint.iacr.org/
  8. [FIPR05]
    Freedman, M., Ishai, Y., Pinkas, B., Reingold, O.: Keyword search and oblivious pseudorandom functions. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 303–324. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. [FKN94]
    Feige, U., Kilian, J., Naor, M.: A Minimal Model for Secure Computation. In: Proceedings of ACM STOC 1994, pp. 554–563 (1994) Google Scholar
  10. [FNP04]
    Freedman, M., Nissim, K., Pinkas, B.: Efficient private matching and set intersection. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 1–19. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. [FP00]
    Fouque, P., Pointcheval, D.: Threshold cryptosystems secure against chosen-ciphertext attacks. In: Proceedings of Asiacrypt, pp. 573–584 (2000)Google Scholar
  12. [GG03]
    Von Zur Gathen, J., Gerhard, J.: Modern Computer Algebra, 2nd edn. University Press, Cambridge (2003)MATHGoogle Scholar
  13. [GMW87]
    Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game or a completeness theorem for protocols with honest majority. In: Proceedings of the 19th Annual ACM symposium on Theory of Computing, pp. 218–229 (1987) Google Scholar
  14. [GRR98]
    Gennaro, R., Rabin, M., Rabin, T.: Simplified vss and fast-track multiparty computations with applications to threshold cryptography. In: Proceedings of ACM PODC, pp. 101–111 (1998) Google Scholar
  15. [IK97]
    Ishai, Y., Kushilevitz, E.: Private Simultaneous Messages Protocols with Applications. In: Proceedings of 5th Israel Symposium on Theoretical Comp. Sc., pp. 174–183 (1997) Google Scholar
  16. [IK00]
    Ishai, Y., Kushilevitz, E.: Randomizing polynomials: A New Paradigm for Round-efficient Secure Computation. In: Proceedings of FOCS (2000) Google Scholar
  17. [KS05]
    Kissner, L., Song, D.: Privacy preserving set operations. In: Shoup, V. (ed.) CRYPTO 2005. LNCS, vol. 3621, pp. 241–257. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. [Pai00]
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Proceedings of Asiacrypt, pp. 573–584 (2000) Google Scholar
  19. [Sha79]
    Shamir, A.: How to share a secret. In: CACM, pp. 612–613 (1979) Google Scholar
  20. [Yao82]
    Yao, A.C.: Protocols for secure computation. In: Proceedings of Focs, pp. 160-164 (1982)Google Scholar
  21. [Yao86]
    Yao, A.C.: How to generate and exchange secrets. In: Proceedings of 27th FOCS, pp. 162–167 (1986) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Payman Mohassel
    • 1
  • Matthew Franklin
    • 1
  1. 1.Department of Computer ScienceUniversity of CaliforniaDavisUSA

Personalised recommendations