Advertisement

Robust Visual Tracking for Multiple Targets

  • Yizheng Cai
  • Nando de Freitas
  • James J. Little
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3954)

Abstract

We address the problem of robust multi-target tracking within the application of hockey player tracking. The particle filter technique is adopted and modified to fit into the multi-target tracking framework. A rectification technique is employed to find the correspondence between the video frame coordinates and the standard hockey rink coordinates so that the system can compensate for camera motion and improve the dynamics of the players. A global nearest neighbor data association algorithm is introduced to assign boosting detections to the existing tracks for the proposal distribution in particle filters. The mean-shift algorithm is embedded into the particle filter framework to stabilize the trajectories of the targets for robust tracking during mutual occlusion. Experimental results show that our system is able to automatically and robustly track a variable number of targets and correctly maintain their identities regardless of background clutter, camera motion and frequent mutual occlusion between targets.

Keywords

Video Frame Particle Filter Camera Motion Tracking Result Proposal Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Isard, M., Blake, A.: CONDENSATION-Conditional Density Propagation for Visual Tracking. Internatinal Journal on Computer Vision 29(1), 5–28 (1998)CrossRefGoogle Scholar
  2. 2.
    Hue, C., Le Cadre, J., Pèrez, P.: Tracking Multiple Objects with Particle Filtering. IEEE Transactions on Aerospace and Electronic Systems 38, 313–318 (2003)Google Scholar
  3. 3.
    Vermaak, J., Doucet, A., Pèrez, P.: Maintaining Multi-modality through Mixture Tracking. In: Internatinal Conference on Computer Vision, vol. II, pp. 1110–1116 (2003)Google Scholar
  4. 4.
    Okuma, K., Taleghani, A., de Freitas, N., Little, J.J., Lowe, D.G.: A Boosted Particle Filter: Multitarget Detection and Tracking. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, pp. 28–39. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  5. 5.
    Viola, P., Jones, M.: Robust Real-Time Face Detection. Internatinal Journal on Computer Vision 57(2), 137–154 (2004)CrossRefGoogle Scholar
  6. 6.
    Kang, J., Cohen, I., Medioni, G.: Soccer Player Tracking across Uncalibrated Camera Streams. In: Joint IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance (VS-PETS) In Conjunction with ICCV, pp. 172–179 (2003)Google Scholar
  7. 7.
    Zhao, T., Nevatia, R.: Tracking Multiple Humans in Complex Situations. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(9), 1208–1221 (2004)CrossRefGoogle Scholar
  8. 8.
    MacCormick, J., Blake, A.: A Probabilistic Exclusion Principle for Tracking Multiple Objects. Internatinal Journal on Computer Vision 39(1), 57–71 (2000)CrossRefzbMATHGoogle Scholar
  9. 9.
    Isard, M., MacCormick, J.: BraMBLe: A Bayesian Multiple-Blob Tracker. In: Internatinal Conference on Computer Vision, vol. II, pp. 34–41 (2001)Google Scholar
  10. 10.
    Rittscher, J., Tu, P., Krahnstoever, N.: Simultaneous estimation of segmentation and shape. In: CVPR 2005, vol. II, pp. 486–493 (2005)Google Scholar
  11. 11.
    Shan, C., Wei, Y., Tan, T., Ojardias, F.: Real Time Hand Tracking by Combining Particle Filtering and Mean Shift. In: International Conference on Automatic Face and Gesture Recognition, pp. 669–674 (2004)Google Scholar
  12. 12.
    Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based Object Tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(5), 564–577 (2003)CrossRefGoogle Scholar
  13. 13.
    Pérez, P., Hue, C., Vermaak, J., Gangnet, M.: Color-Based Probabilistic Tracking. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 661–675. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  14. 14.
    Okuma, K., Little, J., Lowe, D.: Automatic Rectification of Long Image Sequences. In: Asian Conference on Computer Vision (2004)Google Scholar
  15. 15.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  16. 16.
    Blackman, S., Popoli, R.: Design and Analysis of Modern Tracking Systems. Artech House, Norwood (1999)zbMATHGoogle Scholar
  17. 17.
    Bertsekas, D.: Linear Network Optimization: Algorithms and Codes. The MIT Press, Cambridge (1991)zbMATHGoogle Scholar
  18. 18.
    Comaniciu, D., Ramesh, V., Meer, P.: Real-time tracking of non-rigid objects using mean shift. In: International Conference on Computer Vision and Pattern Recognition, pp. 2142–2149 (2000)Google Scholar
  19. 19.
    Cheng, Y.: Mean Shift, Mode Seeking, and Clustering. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(8), 790–799 (1995)CrossRefGoogle Scholar
  20. 20.
    Comaniciu, D., Meer, P.: Mean Shift: A Robust Approach Toward Feature Space Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 24(5), 603–619 (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yizheng Cai
    • 1
  • Nando de Freitas
    • 1
  • James J. Little
    • 1
  1. 1.University of British ColumbiaVancouverCanada

Personalised recommendations