Uncalibrated Factorization Using a Variable Symmetric Affine Camera
Conference paper
Abstract
In order to reconstruct 3-D Euclidean shape by the Tomasi-Kanade factorization, one needs to specify an affine camera model such as orthographic, weak perspective, and paraperspective. We present a new method that does not require any such specific models. We show that a minimal requirement for an affine camera to mimic perspective projection leads to a unique camera model, called symmetric affine camera, which has two free functions. We determine their values from input images by linear computation and demonstrate by experiments that an appropriate camera model is automatically selected.
Download
to read the full conference paper text
References
- 1.Deguchi, K., Sasano, T., Arai, H., Yoshikawa, H.: 3-D shape reconstruction from endoscope image sequences by the factorization method. IEICE Trans. Inf. & Syst. E79-D(9), 1329–1336 (1996)Google Scholar
- 2.Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
- 3.Kanatani, K.: Group-Theoretical Methods in Image Understanding. Springer, Berlin (1990)CrossRefzbMATHGoogle Scholar
- 4.Kanatani, K.: Geometric Computation for Machine Vision. Oxford University Press, Oxford (1993)zbMATHGoogle Scholar
- 5.Kanatani, K., Sugaya, Y.: Factorization without factorization: complete recipe. Mem. Fac. Eng. Okayama Univ. 38(1/2), 61–72 (2004)Google Scholar
- 6.Kanatani, K., Sugaya, Y., Ackermann, H.: Uncalibrated factorization using a variable symmetric affine camera. Mem. Fac. Eng. Okayama Univ. 40, 53–63 (2006)Google Scholar
- 7.Poelman, C.J., Kanade, T.: A paraperspective factorization method for shape and motion recovery. IEEE Trans. Patt. Anal. Mach. Intell. 19(3), 206–218 (1997)CrossRefGoogle Scholar
- 8.Quan, L.: Self-calibration of an affine camera from multiple views. Int. J. Comput. Vision 19(1), 93–105 (1996)CrossRefGoogle Scholar
- 9.Shapiro, L.S., Zisserman, A., Brady, M.: 3D motion recovery via affine epipolar geometry. Int. J. Comput. Vision 16(2), 147–182 (1995)CrossRefGoogle Scholar
- 10.Tomasi, C., Kanade, T.: Shape and motion from image streams under orthography – A factorization method. Int. J. Comput. Vision 9(2), 137–154 (1992)CrossRefGoogle Scholar
Copyright information
© Springer-Verlag Berlin Heidelberg 2006