Advertisement

Uncalibrated Factorization Using a Variable Symmetric Affine Camera

  • Kenichi Kanatani
  • Yasuyuki Sugaya
  • Hanno Ackermann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3954)

Abstract

In order to reconstruct 3-D Euclidean shape by the Tomasi-Kanade factorization, one needs to specify an affine camera model such as orthographic, weak perspective, and paraperspective. We present a new method that does not require any such specific models. We show that a minimal requirement for an affine camera to mimic perspective projection leads to a unique camera model, called symmetric affine camera, which has two free functions. We determine their values from input images by linear computation and demonstrate by experiments that an appropriate camera model is automatically selected.

References

  1. 1.
    Deguchi, K., Sasano, T., Arai, H., Yoshikawa, H.: 3-D shape reconstruction from endoscope image sequences by the factorization method. IEICE Trans. Inf. & Syst. E79-D(9), 1329–1336 (1996)Google Scholar
  2. 2.
    Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  3. 3.
    Kanatani, K.: Group-Theoretical Methods in Image Understanding. Springer, Berlin (1990)CrossRefzbMATHGoogle Scholar
  4. 4.
    Kanatani, K.: Geometric Computation for Machine Vision. Oxford University Press, Oxford (1993)zbMATHGoogle Scholar
  5. 5.
    Kanatani, K., Sugaya, Y.: Factorization without factorization: complete recipe. Mem. Fac. Eng. Okayama Univ. 38(1/2), 61–72 (2004)Google Scholar
  6. 6.
    Kanatani, K., Sugaya, Y., Ackermann, H.: Uncalibrated factorization using a variable symmetric affine camera. Mem. Fac. Eng. Okayama Univ. 40, 53–63 (2006)Google Scholar
  7. 7.
    Poelman, C.J., Kanade, T.: A paraperspective factorization method for shape and motion recovery. IEEE Trans. Patt. Anal. Mach. Intell. 19(3), 206–218 (1997)CrossRefGoogle Scholar
  8. 8.
    Quan, L.: Self-calibration of an affine camera from multiple views. Int. J. Comput. Vision 19(1), 93–105 (1996)CrossRefGoogle Scholar
  9. 9.
    Shapiro, L.S., Zisserman, A., Brady, M.: 3D motion recovery via affine epipolar geometry. Int. J. Comput. Vision 16(2), 147–182 (1995)CrossRefGoogle Scholar
  10. 10.
    Tomasi, C., Kanade, T.: Shape and motion from image streams under orthography – A factorization method. Int. J. Comput. Vision 9(2), 137–154 (1992)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Kenichi Kanatani
    • 1
  • Yasuyuki Sugaya
    • 2
  • Hanno Ackermann
    • 1
  1. 1.Department of Computer ScienceOkayama UniversityOkayamaJapan
  2. 2.Department of Information and Computer SciencesToyohashi University of TechnologyToyohashi, AichiJapan

Personalised recommendations