Level-Set Curve Particles

  • Tingting Jiang
  • Carlo Tomasi
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3953)


In many applications it is necessary to track a moving and deforming boundary on the plane from infrequent, sparse measurements. For instance, each of a set of mobile observers may be able to tell the position of a point on the boundary. Often boundary components split, merge, appear, and disappear over time. Data are typically sparse and noisy and the underlying dynamics is uncertain. To address these issues, we use a particle filter to represent a distribution in the large space of all plane curves and propose a full-fledged combination of level sets and particle filters. Our main contribution is in controlling the potentially high expense of multiplying the cost of a level set representation of boundaries by the number of particles needed. Experiments on tracking the boundary of a colon in tomographic imagery from sparse edge measurements show the promise of the approach.


Active Contour Boundary Component Plane Curf Signed Distance Function Geodesic Active Contour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Isard, M., Blake, A.: Condensation-conditional density propagation for visual tracking. IJCV 29, 5–28 (1998)CrossRefGoogle Scholar
  2. 2.
    Blake, A., Isard, M.: Active Contours. Springer, New York (1999)Google Scholar
  3. 3.
    Einstein, A.: Zur Theorie der Brownschen Bewegung. Ann. d. Phys. 19, 180 (1906)CrossRefGoogle Scholar
  4. 4.
    Risken, H.: The Fokker-Planck Equation: Methods of Solution and Applications. Springer, New York (1996)zbMATHGoogle Scholar
  5. 5.
    Doucet, A., de Freitas, N., Gordon, N. (eds.): Sequential Monte Carlo in Practice. Springer, New York (2001)zbMATHGoogle Scholar
  6. 6.
    De Boor, C.: A Practical Introduction to Splines. Springer, New York (2001)Google Scholar
  7. 7.
    Kalman, R.E.: A new approach to linear filtering and prediction problems. Trans. of the ASME J. on Basic Eng. 82, 34–45 (1960)Google Scholar
  8. 8.
    Osher, S., Sethian, J.A.: Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. of Comp. Phys. 79, 12–49 (1988)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Caselles, V., Morel, J.M., Sapiro, G. (eds.): Special issue on partial differential equations and geometrydriven diffusion in image processing and analysis. IEEE Trans. on Image Proc. 7, 269–473 (1998)Google Scholar
  10. 10.
    Nielsen, M., Johansen, P., Fogh Olsen, O., Weickert, J. (eds.): Scale-Space 1999. LNCS, vol. 1682. Springer, Heidelberg (1999)Google Scholar
  11. 11.
    Osher, S.J., Fedkiw, R.P.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2002)Google Scholar
  12. 12.
    Adalsteinsson, D., Sethian, J.A.: A fast level set method for propagating interfaces. J. of Comp. Phys. 118, 269–277 (1995)zbMATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Cremers, D., Soatto, S.: A pseudo-distance for shape priors in level set segmentation. In: 2nd IEEE Workshop on Variational, Geometric and Level Set Methods in Computer Vision, pp. 169–176 (2003)Google Scholar
  14. 14.
    Paragios, N., Deriche, R.: Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Trans. PAMI 22, 266–280 (2000)Google Scholar
  15. 15.
    Zhang, T., Freedman, D.: Tracking objects using density matching and shape priors. ICCV 2, 1050–1062 (2003)Google Scholar
  16. 16.
    Malladi, R., Sethian, J.A., Vemuri, B.C.: Shape modeling with front propagation: A level set approach. IEEE Trans. on PAMI 17, 158–175 (1995)Google Scholar
  17. 17.
    Tsai, A., Yezzi, A., Wells Jr., W., Tempany, C., Tucker, D., Fan, A., Grimson, W.E., Willsky, A.: A shape-based approach to the segmentation of medical imagery using level sets. IEEE Trans. on Med. Im. 22(2), 137–154 (2003)CrossRefGoogle Scholar
  18. 18.
    Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. IJCV 22, 61–79 (1997)zbMATHCrossRefGoogle Scholar
  19. 19.
    Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A., Yezzi, A.: Gradient flows and geometric active contour models. In: ICCV, pp. 810–815 (1995)Google Scholar
  20. 20.
    Bertalmio, M., Sapiro, G., Randall, G.: Morphing active contours. IEEE Trans. on PAMI 22, 733–737 (2000)Google Scholar
  21. 21.
    Mansouri, A.: Region tracking via level set PDEs without motion computation. IEEE Trans. on PAMI 24, 947–961 (2002)Google Scholar
  22. 22.
    Rathi, Y., Vaswani, N., Tannenbaum, A., Yezzi, A.: Particle filtering for geometric active contours with application to tracking moving and deforming objects. CVPR 2, 2–9 (2005)Google Scholar
  23. 23.
    Yezzi, A.J., Soatto, S.: DEFORMOTION: Deforming motion, shape average and the joint registration and approximation of structures in images. IJCV 53(2), 153–167 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Tingting Jiang
    • 1
  • Carlo Tomasi
    • 1
  1. 1.Department of Computer ScienceDuke UniversityDurhamUSA

Personalised recommendations