Detecting Doctored JPEG Images Via DCT Coefficient Analysis

  • Junfeng He
  • Zhouchen Lin
  • Lifeng Wang
  • Xiaoou Tang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3953)


The steady improvement in image/video editing techniques has enabled people to synthesize realistic images/videos conveniently. Some legal issues may occur when a doctored image cannot be distinguished from a real one by visual examination. Realizing that it might be impossible to develop a method that is universal for all kinds of images and JPEG is the most frequently used image format, we propose an approach that can detect doctored JPEG images and further locate the doctored parts, by examining the double quantization effect hidden among the DCT coefficients. Up to date, this approach is the only one that can locate the doctored part automatically. And it has several other advantages: the ability to detect images doctored by different kinds of synthesizing methods (such as alpha matting and inpainting, besides simple image cut/paste), the ability to work without fully decompressing the JPEG images, and the fast speed. Experiments show that our method is effective for JPEG images, especially when the compression quality is high.


Discrete Cosine Transform JPEG Compression Discrete Cosine Transform Coefficient Quantization Step Inverse Discrete Cosine Transform 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Agarwala, A., et al.: Interactive Digital Photomontage. In: ACM Siggraph 2004, pp. 294–301 (2004)Google Scholar
  2. 2.
    Barrett, W.A., Cheney, A.S.: Object-Based Image Editing. In: ACM Siggraph 2002, pp. 777–784 (2002)Google Scholar
  3. 3.
    Chuang, Y.-Y., et al.: A Bayesian Approach to Digital Matting. In: CVPR 2001, pp. II, 264–271 (2001) Google Scholar
  4. 4.
    Kwatra, V., et al.: Graphcut Textures: Image and Video Synthesis Using Graph Cuts. In: ACM Siggraph 2003, pp. 277–286 (2003)Google Scholar
  5. 5.
    Rother, C., Blake, A., Kolmogorov, V.: Grabcut - Interactive Foreground Extraction Using Iterated Graph Cuts. In: ACM Siggraph 2004, pp. 309–314 (2004)Google Scholar
  6. 6.
    Chuang, Y.-Y., et al.: Video Matting of Complex Scenes. In: ACM Siggraph 2002, pp. 243–248 (2002)Google Scholar
  7. 7.
    Pérez, P., Gangnet, M., Blake, A.: Poisson Image Editing. In: ACM Siggraph 2003, pp. 313–318 (2003)Google Scholar
  8. 8.
    Sun, J., et al.: Poisson Matting. ACM Siggraph, pp. 315-321 (2004)Google Scholar
  9. 9.
    Sun, J., Yuan, L., Jia, J., Shum, H.-Y.: Image Completion with Structure Propagation. In: ACM Siggraph 2005, pp. 861–868 (2005)Google Scholar
  10. 10.
    Li, Y., Sun, J., Shum, H.-Y.: Video Object Cut and Paste. In: ACM Siggraph 2005, pp. 595–600 (2005)Google Scholar
  11. 11.
    Li, Y., et al.: Lazy Snapping. In: ACM Siggraph 2004, pp. 303–308 (2004)Google Scholar
  12. 12.
    Wang, J., et al.: Interactive Video Cutout. In: ACM Siggraph 2005, pp. 585–594 (2005)Google Scholar
  13. 13.
    Lee, S.-J., Jung, S.-H.: A Survey of Watermarking Techniques Applied to Multimedia. In: Proc. 2001 IEEE Int’l Symp. Industrial Electronics (ISIE 2001), vol. 1, pp. 272–277 (2001)Google Scholar
  14. 14.
    Popescu, A.C., Farid, H.: Statistical Tools for Digital Forensics. In: 6th Int’l Workshop on Information Hiding, Toronto, Canada (2004)Google Scholar
  15. 15.
    Popescu, A.C., Farid, H.: Exposing Digital Forgeries in Color Filter Array Interpolated Images. IEEE Trans. Signal Processing 53(10), 3948–3959 (2005)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Popescu, A.C., Farid, H.: Exposing Digital Forgeries by Detecting Duplicated Image Regions. Technical Report, TR2004-515, Dartmouth College, Computer ScienceGoogle Scholar
  17. 17.
    Ward, D.L.: Photostop. Available at:
  18. 18.
    Ng, T.-T., Chang, S.-F., Sun, Q.: Blind Detection of Photomontage Using Higher Order Statistics. In: IEEE Int’l Symp. Circuits and Systems (ISCAS), Vancouver, Canada, May 2004, pp. 688–691 (2004)Google Scholar
  19. 19.
    Lin, Z., Wang, R., Tang, X., Shum, H.-Y.: Detecting Doctored Images Using Camera Response Normality and Consistency. In: Lin, Z., Wang, R., Tang, X., Shum, H.-Y. (eds.) CVPR 2005, pp. 1087–1092 (2005)Google Scholar
  20. 20.
    Lukas, J., Fridrich, J.: Estimation of Primary Quantization Matrix in Double Compressed JPEG Images. In: Proc. Digital Forensic Research Workshop 2003 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Junfeng He
    • 1
  • Zhouchen Lin
    • 2
  • Lifeng Wang
    • 2
  • Xiaoou Tang
    • 2
  1. 1.Tsinghua UniversityBeijingChina
  2. 2.Microsoft Research AsiaBeijingChina

Personalised recommendations