An Integral Solution to Surface Evolution PDEs Via Geo-cuts

  • Yuri Boykov
  • Vladimir Kolmogorov
  • Daniel Cremers
  • Andrew Delong
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3953)


We introduce a new approach to modelling gradient flows of contours and surfaces. While standard variational methods (e.g. level sets) compute local interface motion in a differential fashion by estimating local contour velocity via energy derivatives, we propose to solve surface evolution PDEs by explicitly estimating integral motion of the whole surface. We formulate an optimization problem directly based on an integral characterization of gradient flow as an infinitesimal move of the (whole) surface giving the largest energy decrease among all moves of equal size. We show that this problem can be efficiently solved using recent advances in algorithms for global hypersurface optimization [4,2,11]. In particular, we employ the geo-cuts method [4] that uses ideas from integral geometry to represent continuous surfaces as cuts on discrete graphs. The resulting interface evolution algorithm is validated on some 2D and 3D examples similar to typical demonstrations of level-set methods. Our method can compute gradient flows of hypersurfaces with respect to a fairly general class of continuous functionals and it is flexible with respect to distance metrics on the space of contours/surfaces. Preliminary tests for standard L 2 distance metric demonstrate numerical stability, topological changes and an absence of any oscillatory motion.


  1. 1.
    Amini, A.A., Weymouth, T.E., Jain, R.C.: Using dynamic programming for solving variational problems in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(9), 855–867 (1990)CrossRefGoogle Scholar
  2. 2.
    Appleton, B., Talbot, H.: Globally minimal surfaces by continuous maximal flows. IEEE transactions on Pattern Analysis and Pattern Recognition (PAMI) 28(1), 106–118 (2006)CrossRefGoogle Scholar
  3. 3.
    Black, M.J., Anandan, P.: The robust estimation of multiple motions: Parametric and piecewise–smooth flow fields. cvgip-iu 63(1), 75–104 (1996)Google Scholar
  4. 4.
    Boykov, Y., Kolmogorov, V.: Computing geodesics and minimal surfaces via graph cuts. In: Int. Conf. on Computer Vision, vol. I, pp. 26–33 (2003)Google Scholar
  5. 5.
    Boykov, Y., Kolmogorov, V.: An experimental comparison of mincut/max-flow algorithms for energy minimization in vision. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(9), 1124–1137 (2004)CrossRefGoogle Scholar
  6. 6.
    Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Processing 10(2), 266–277 (2001)zbMATHCrossRefGoogle Scholar
  7. 7.
    Charpiat, G., Faugeras, O., Keriven, R.: Approximations of shape metrics and application to shape warping and empirical shape statistics. Journal of Foundations of Computational Mathematics 5(1), 1–58 (2005)zbMATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Cremers, D., Tischhäuser, F., Weickert, J., Schnörr, C.: Diffusion Snakes: Introducing statistical shape knowledge into the Mumford–Shah functional. IJCV 50(3), 295–313 (2002)zbMATHCrossRefGoogle Scholar
  9. 9.
    Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)CrossRefGoogle Scholar
  10. 10.
    Kass, M., Witkin, A., Terzolpoulos, D.: Snakes: Active contour models. International Journal of Computer Vision 1(4), 321–331 (1988)CrossRefGoogle Scholar
  11. 11.
    Kirsanov, D., Gortler, S.-J.: A discrete global minimization algorithm for continuous variational problems. Harvard CS. Tech. Rep., TR-14-04 (July 2004)Google Scholar
  12. 12.
    Kolmogorov, V., Boykov, Y.: What metrics can be approximated by geo-cuts, or global optimization of length/area and flux. In: ICCV (October 2005)Google Scholar
  13. 13.
    Kornprobst, P., Deriche, R., Aubert, G.: Image sequence analysis via partial differential equations. Journal of Math. Imaging and Vision 11(1), 5–26 (1999)CrossRefMathSciNetGoogle Scholar
  14. 14.
    Paragios, N.: Shape-based segmentation and tracking in cardiac image analysis. IEEE Transactions on Medical Image Analysis, 402–407 (2003)Google Scholar
  15. 15.
    Perona, P., Malik, J.: Scale-space and edge-detection. IEEE Trans. on Pattern Analysis and Machine Intelligence 12(7), 629–639 (1990)CrossRefGoogle Scholar
  16. 16.
    Weickert, J.: Anisotropic diffusion in image processing. Teubner, Stuttgart (1998)Google Scholar
  17. 17.
    Weickert, J., Schnörr, C.: A theoretical framework for convex regularizers in PDE–based computation of image motion. IJCV 45(3), 245–264 (2001)zbMATHCrossRefGoogle Scholar
  18. 18.
    Xu, N., Bansal, R., Ahuja, N.: Object segmentation using graph cuts based active contours. In: CVPR, vol. II, pp. 46–53 (2003)Google Scholar
  19. 19.
    Yezzi, A., Mennucci, A.: Conformal metrics and true “gradient flows” for curves. IEEE Intl. Conf. on Comp. Vis. (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Yuri Boykov
    • 1
  • Vladimir Kolmogorov
    • 2
  • Daniel Cremers
    • 3
  • Andrew Delong
    • 1
  1. 1.University of Western OntarioCanada
  2. 2.University College LondonUK
  3. 3.University of BonnGermany

Personalised recommendations