Background Cut
Abstract
In this paper, we introduce background cut, a high quality and real-time foreground layer extraction algorithm. From a single video sequence with a moving foreground object and stationary background, our algorithm combines background subtraction, color and contrast cues to extract a foreground layer accurately and efficiently. The key idea in background cut is background contrast attenuation, which adaptively attenuates the contrasts in the background while preserving the contrasts across foreground/background boundaries. Our algorithm builds upon a key observation that the contrast (or more precisely, color image gradient) in the background is dissimilar to the contrast across foreground/background boundaries in most cases. Using background cut, the layer extraction errors caused by background clutter can be substantially reduced. Moreover, we present an adaptive mixture model of global and per-pixel background colors to improve the robustness of our system under various background changes. Experimental results of high quality composite video demonstrate the effectiveness of our background cut algorithm.
Keywords
Segmentation Result Background Image Color Model Foreground Object Segmentation BoundaryReferences
- 1.Elgammal, A., Harwood, D., Davis, L.: Non-parametric model for background subtraction. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 751–767. Springer, Heidelberg (2000)CrossRefGoogle Scholar
- 2.Bergen, J.R., Burt, P.J., Hingorani, R., Peleg, S.: A three-frame algorithm for estimating two-component image motion. IEEE Trans. on PAMI 14, 886–896 (1992)CrossRefGoogle Scholar
- 3.Boykov, Y., Jolly, M.P.: Interactive graph cuts for optimal boundary & region segmentation of objects in n-d images. In: Proceedings of ICCV, pp. 105–112 (2001)Google Scholar
- 4.Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. In: Energy Minimization Methods in CVPR (2001)Google Scholar
- 5.Goldberger, J., Gordon, S., Greenspan, H.: An efficient image similarity measure based on approximations of kl-divergence between two gaussian mixtures. In: Proceedings of CVPR, pp. 487–494 (2004)Google Scholar
- 6.Grimson, W.E.L., Stauffer, C., Romano, R., Lee, L.: Using adaptive tracking to classify and monitor activities in a site. In: Proceedings of CVPR, pp. 22–29 (1998)Google Scholar
- 7.Koller, D., Weber, J., Malik, J.: Robust multiple car tracking with occlusion reasoning. In: Proceedings of ECCV, pp. 189–196 (1993)Google Scholar
- 8.Kolmogorov, V., Criminisi, A., Blake, A., Cross, G., Rother, C.: Bi-layer segmentation of binocular stereo video. In: Proceedings of CVPR, pp. 1186–1193 (2005)Google Scholar
- 9.Li, Y., Sun, J., Shum, H.Y.: Video object cut and paste. In: Proceedings of ACM SIGGRAPH, pp. 595–600 (2005)Google Scholar
- 10.Li, Y., Sun, J., Tang, C.K., Shum, H.Y.: Lazy snapping. In: Proceedings of ACM SIGGRAPH (2004)Google Scholar
- 11.Mittal, A., Paragios, N.: Motion-based background subtraction using adaptive kernel density estimation. In: Proceedings of CVPR, pp. 302–309 (2004)Google Scholar
- 12.Monnet, A., Mittal, A., Paragios, N., Ramesh, V.: Background modeling and subtraction of dynamic scenes. In: Proceedings of ICCV, pp. 1305–1312 (2005)Google Scholar
- 13.Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Tran. on PAMI 12, 629–663 (1990)CrossRefGoogle Scholar
- 14.Ren, Y., Chua, C.S., Ho, Y.-K.: Motion detection with non-stationary background. In: Machine Vision and Applications, pp. 332–343 (2003)Google Scholar
- 15.Rother, C., Blake, A., Kolmogorov, V.: Grabcut - interactive foreground extraction using iterated graph cuts. In: Proceedings of ACM SIGGRAPH, pp. 309–314 (2004)Google Scholar
- 16.Sheikh, Y., Shah, M.: Bayesian object detection in dynamic scenes. In: Proceedings of CVPR, pp. 1778–1792 (2005)Google Scholar
- 17.Toyama, K., Krumm, J., Brumitt, B., Meyers, B.: Wallflower: principles and practice of background maintenance. In: Proceedings of ICCV, pp. 255–261 (1999)Google Scholar
- 18.Tuzel, O., Porikli, F., Meer, P.: A bayesian approach to background modeling. In: IEEE Workshop on Machine Vision for Intelligent Vehicles (2005)Google Scholar
- 19.Wang, J., Bhat, P., Colburn, R.A., Agrawala, M., Cohen, M.F.: Interactive video cutout. In: Proceedings of ACM SIGGRAPH, pp. 585–594 (2005)Google Scholar
- 20.Wang, J.Y.A., Adelson, E.H.: Layered representation for motion analysis. In: Proceedings of CVPR, pp. 361–366 (1993)Google Scholar
- 21.Wills, J., Agarwal, S., Belongie, S.: What went where. In: Proceedings of CVPR, pp. 37–44 (2003)Google Scholar
- 22.Wren, C., Azarbayejani, A., Darrell, T., Pentland, A.: Pfinder: Real-time tracking of the human body. IEEE Tran. on PAMI 19, 780–785 (1997)CrossRefGoogle Scholar
- 23.Xiao, J.J., Shah, M.: Motion layer extraction and alpha matting. In: Proceedings of CVPR, pp. 698–703 (2005)Google Scholar