Advertisement

Coloring Local Feature Extraction

  • Joost van de Weijer
  • Cordelia Schmid
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3952)

Abstract

Although color is commonly experienced as an indispensable quality in describing the world around us, state-of-the art local feature-based representations are mostly based on shape description, and ignore color information. The description of color is hampered by the large amount of variations which causes the measured color values to vary significantly. In this paper we aim to extend the description of local features with color information. To accomplish a wide applicability of the color descriptor, it should be robust to : 1. photometric changes commonly encountered in the real world, 2. varying image quality, from high quality images to snap-shot photo quality and compressed internet images. Based on these requirements we derive a set of color descriptors. The set of proposed descriptors are compared by extensive testing on multiple applications areas, namely, matching, retrieval and classification, and on a wide variety of image qualities. The results show that color descriptors remain reliable under photometric and geometrical changes, and with decreasing image quality. For all experiments a combination of color and shape outperforms a pure shape-based approach.

Keywords

Shape Descriptor Sift Descriptor Color Descriptor Opponent Color Spherical Angle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schmid, C., Mohr, R.: Local grayvalue invariants for image retrieval. IEEE Trans. on Pattern Analysis and Machine Intelligence 19, 530–534 (1997)CrossRefGoogle Scholar
  2. 2.
    Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., van Gool, L.: A comparison of afine region detectors. International Journal of Computer Vision 65, 43–72 (2005)CrossRefGoogle Scholar
  3. 3.
    Lowe, D.: Distinctive image features from scale-invariant keypoints. International Journal Computer Vision 60, 91–110 (2004)CrossRefGoogle Scholar
  4. 4.
    Lazebnik, S., Schmid, C.: A maximum entropy framework for part-based texture and object recognition. In: Proc. IEEE Int’l Conf. Comp. Vision, pp. 832–838 (2005)Google Scholar
  5. 5.
    Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scale-invariant learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 264–271 (2003)Google Scholar
  6. 6.
    Ballard, D.H.: Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognition 12, 111–122 (1981)CrossRefzbMATHGoogle Scholar
  7. 7.
    Funt, B., Finlayson, G.: Color constant color indexing. IEEE Trans. on Pattern Analysis and Machine Intelligence 17, 522–529 (1995)CrossRefGoogle Scholar
  8. 8.
    Finlayson, G.D., Schiele, B., Crowley, J.L.: Comprehensive colour image normalization. In: Burkhardt, H.-J., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1406, pp. 475–490. Springer, Heidelberg (1998)Google Scholar
  9. 9.
    Gevers, T., Smeulders, A.: Color based object recognition. Pattern Recognition 32, 453–464 (1999)CrossRefGoogle Scholar
  10. 10.
    Geusebroek, J., van den Boomgaard, R., Smeulders, A., Geerts, H.: Color invariance. IEEE Trans. Pattern Analysis Machine Intell. 23, 1338–1350 (2001)CrossRefGoogle Scholar
  11. 11.
    van de Weijer, J., Gevers, T., Geusebroek, J.: Edge and corner detection by photometric quasi-invariants. IEEE Trans. Pattern Analysis and Machine Intelligence 27, 625–630 (2005)CrossRefGoogle Scholar
  12. 12.
    Gevers, T., Stokman, H.: Robust histogram construction from color invariants for object recognition. IEEE Trans. Pattern Analysis and Machine Intelligence 26, 113–118 (2004)CrossRefGoogle Scholar
  13. 13.
    Mindru, F., Tuytelaars, T., Gool, L.V., Moons, T.: Moment invariants for recognition under changing viewpoint and illumination. Computer Vision Image Understing 94, 3–27 (2004)CrossRefGoogle Scholar
  14. 14.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. on pattern analysis and machine intelligence 27, 1615–1630 (2005)CrossRefGoogle Scholar
  15. 15.
    Matas, J(G.), Koubaroulis, D., Kittler, J.: Colour image retrieval and object recognition using the multimodal neighbourhood signature. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1842, pp. 48–64. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  16. 16.
    Shafer, S.: Using color to seperate reflection components. COLOR research and application 10, 210–218 (1985)CrossRefGoogle Scholar
  17. 17.
    Buchsbaum, G.: A spatial processor model for object colour perception. Journal of the Franklin Institute 310 (1980)Google Scholar
  18. 18.
    van de Weijer, J., Gevers, T.: Color constancy based on the grey-edge hypothesis. In: ICIP 2005, Genua, Italy (2005)Google Scholar
  19. 19.
    Finlayson, G., Drew, M., Funt, B.: Color constancy: Generalized diagonal transforms suffice. Journal of the Optical Society of America A 11, 3011–3022 (1994)CrossRefGoogle Scholar
  20. 20.
    van de Weijer, J., Gevers, T., Smeulders, A.: Robust photometric invariant features from the color tensor. IEEE Trans. Image Processing 15, 118–127 (2006)CrossRefGoogle Scholar
  21. 21.
    Finlayson, G.D., Chatterjee, S.S., Funt, B.V.: Color angular indexing. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1065, pp. 16–27. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  22. 22.
    Ohta, Y., Kanade, T., Sakai, T.: Color information for region segmentation. Computer Graphics and Image Processing 13, 222–241 (1980)CrossRefGoogle Scholar
  23. 23.
    Barnard, K., Martin, L., Funt, B., Coath, A.: A data set for colour research. Color Research and Application 27, 147–151 (2002)CrossRefGoogle Scholar
  24. 24.
    Willamowski, J., Arregui, D., Csurka, G., Dance, C.R., Fan, L.: Categorizing nine visual classes using local appearance descriptors. In: IWLAVS (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Joost van de Weijer
    • 1
  • Cordelia Schmid
    • 1
  1. 1.GRAVIR-INRIAMontbonnotFrance

Personalised recommendations