Conditional Infomax Learning: An Integrated Framework for Feature Extraction and Fusion

  • Dahua Lin
  • Xiaoou Tang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3951)

Abstract

The paper introduces a new framework for feature learning in classification motivated by information theory. We first systematically study the information structure and present a novel perspective revealing the two key factors in information utilization: class-relevance and redundancy. We derive a new information decomposition model where a novel concept called class-relevant redundancy is introduced. Subsequently a new algorithm called Conditional Informative Feature Extraction is formulated, which maximizes the joint class-relevant information by explicitly reducing the class-relevant redundancies among features. To address the computational difficulties in information-based optimization, we incorporate Parzen window estimation into the discrete approximation of the objective function and propose a Local Active Region method which substantially increases the optimization efficiency. To effectively utilize the extracted feature set, we propose a Bayesian MAP formulation for feature fusion, which unifies Laplacian Sparse Prior and Multivariate Logistic Regression to learn a fusion rule with good generalization capability. Realizing the inefficiency caused by separate treatment of the extraction stage and the fusion stage, we further develop an improved design of the framework to coordinate the two stages by introducing a feedback from the fusion stage to the extraction stage, which significantly enhances the learning efficiency. The results of the comparative experiments show remarkable improvements achieved by our framework.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Turk, M., Pentland, A.: Eigenfaces for Recognition. J. Cognitive Neuroscience 3(1), 71–86 (1991)CrossRefGoogle Scholar
  2. 2.
    Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection. IEEE Trans. on PAMI 19(7), 711–720 (1997)Google Scholar
  3. 3.
    Etemad, K., Chellappa, R.: Discriminant Analysis for Recognition of Human Face Images. J. Opt. Soc. Am. 14(8), 1724–1733 (1997)CrossRefGoogle Scholar
  4. 4.
    Wang, X., Tang, X.: A Unified Framework for Subspace Face Recognition. IEEE Trans. on PAMI 26(9), 1222–1228 (2004)MathSciNetGoogle Scholar
  5. 5.
    Duin, R.P.W., Haeb-Umbach, R.: Multiclass Linear Dimension Reduction by Weighted Pairwise Fisher Criteria. IEEE Trans. on PAMI 23(7), 762–766 (2001)Google Scholar
  6. 6.
    Loog, M., Duin, R.P.W.: Linear Dimensionality Reduction via a Heteroscedastic Extension of LDA: The Chernoff Criterion. IEEE Trans. on PAMI 26(6), 732–739 (2004)Google Scholar
  7. 7.
    Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley Sons, Inc., Chichester (1991)MATHCrossRefGoogle Scholar
  8. 8.
    Yang, Y., Pedersen, J.O.: A Comparative Study on Feature Selection in Text Categorization. In: ICML 1997 (1997)Google Scholar
  9. 9.
    Kwak, N., Choi, C.: Input Feature Selection by Mutual Information Based on Parzen Window. IEEE Trans. on PAMI 24(12), 1667–1671 (2002)Google Scholar
  10. 10.
    Vasconcelos, N.: Feature Selection by Maximum Marginal Diversity. In: NIPS 2002 (2002)Google Scholar
  11. 11.
    Wu, Y., Zhang, A.: Feature Selection for Classifying High-Dimensional Numerical Data. In: CVPR 2004 (2004)Google Scholar
  12. 12.
    Peng, H., Long, F., Ding, C.: Feature Selection Based on Mutual Information Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy. IEEE Trans. on PAMI 27(8), 1226–1238 (2005)Google Scholar
  13. 13.
    Mitra, P., Murthy, C.A., Pal, S.K.: Unsupervised Feature Selection Using Feature Similarity. IEEE Trans. on PAMI 24(3), 301–312 (2002)Google Scholar
  14. 14.
    Vasconcelos, N., Vasconcelos, M.: Scalable Discriminant Feature Selection for Image Retrieval and Recognition. In: CVPR 2004 (2004)Google Scholar
  15. 15.
    Torkkola, K., Campbell, W.M.: Mutual Information in Learning Feature Transformations. In: ICML 2000 (2000)Google Scholar
  16. 16.
    Torkkola, K.: Feature Extraction by Non-Parametric Mutual Information Maximization. J. Machine Learning Research, 1415–1438 (2003)Google Scholar
  17. 17.
    Figueiredo, M.A.T.: Adaptive Sparseness for Supervised Learning. IEEE Trans. on PAMI 25(9), 1150–1159 (2003)Google Scholar
  18. 18.
    Krishnapuram, B., Hartemink, A.J., Carin, L., Figueiredo, M.A.T.: A Bayesian Approach to Joint Feature Selection and Classifier Design. IEEE Trans. on PAMI 26(9), 1105–1111 (2004)Google Scholar
  19. 19.
    Hyvarinen, A., Oja, E.: Independent Component Analysis: Algorithms and Applications. Neural Networks 13(4-5), 411–430 (2000)CrossRefGoogle Scholar
  20. 20.
    Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The FERET Evaluation Methodology for Face-Recognition Algorithms. IEEE Trans. PAMI 22(10), 1090–1104 (2000)Google Scholar
  21. 21.
    Messer, K., Matas, J., Kittler, J., Luettin, J., Maitre, G.: XM2VTSDB: The Extended M2VTS Database. In: Proc. of Int.l Conf. Audio- and Video-based Person Authentication (1999)Google Scholar
  22. 22.
    Martinez, A.M., Benavente, R.: The AR Face Database. CVC Technical Report 24, Purdue University (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Dahua Lin
    • 1
  • Xiaoou Tang
    • 1
    • 2
  1. 1.Dept. of Information EngineeringThe Chinese University of Hong KongHong KongChina
  2. 2.Microsoft Research AsiaBeijingChina

Personalised recommendations