From Tensor-Driven Diffusion to Anisotropic Wavelet Shrinkage

  • Martin Welk
  • Joachim Weickert
  • Gabriele Steidl
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3951)


Diffusion processes driven by anisotropic diffusion tensors are known to be well-suited for structure-preserving denoising. However, numerical implementations based on finite differences introduce unwanted blurring artifacts that deteriorate these favourable filtering properties. In this paper we introduce a novel discretisation of a fairly general class of anisotropic diffusion processes on a 2-D grid. It leads to a locally semi-analytic scheme (LSAS) that is absolutely stable, simple to implement and offers an outstanding sharpness of filtered images. By showing that this scheme can be translated into a 2-D Haar wavelet shrinkage procedure, we establish a connection between tensor-driven diffusion and anisotropic wavelet shrinkage for the first time. This result leads to coupled shrinkage rules that allow to perform highly anisotropic filtering even with the simplest wavelets.


Diffusion Tensor Anisotropic Diffusion Structure Tensor Rotation Invariance Haar Wavelet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bao, Y., Krim, H.: Towards bridging scale-space and multiscale frame analyses. In: Petrosian, A.A., Meyer, F.G. (eds.) Wavelets in Signal and Image Analysis. Computational Imaging and Vision, vol. 19, ch. 6, Kluwer, Dordrecht (2001)Google Scholar
  2. 2.
    Bredies, K., Lorenz, D.A., Maaß, P., Teschke, G.: A partial differential equation for continuous non-linear shrinkage filtering and its application for analyzing MMG data. In: Truchetet, F. (ed.) Wavelet Applications in Industrial Processing. Proceedings of SPIE, vol. 5266, pp. 84–93. SPIE Press, Bellingham (2004)Google Scholar
  3. 3.
    Candés, E., Demanet, L., Donoho, D., Ying, L.: Fast discrete curvelet transform. Technical report, Applied and Computational Mathematics, Caltech, Pasadena, CA (2005)Google Scholar
  4. 4.
    Candés, E.J., Donoho, D.L.: Curvelets: A surprisingly effective nonadaptive representation of objects with edges. In: Cohen, A., Rabut, C., Schumaker, L.L. (eds.) Curve and Surface Fitting, Vanderbilt University Press, Saint-Malo (2000)Google Scholar
  5. 5.
    Chambolle, A., Lucier, B.L.: Interpreting translationally-invariant wavelet shrinkage as a new image smoothing scale space. IEEE Transactions on Image Processing 10(7), 993–1000 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cohen, A., Dahmen, W., Daubechies, I., DeVore, R.: Harmonic analysis in the space BV. Revista Matematica Iberoamericana 19, 235–262 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Coifman, R.R., Donoho, D.: Translation invariant denoising. In: Antoine, A., Oppenheim, G. (eds.) Wavelets in Statistics, pp. 125–150. Springer, New York (1995)CrossRefGoogle Scholar
  8. 8.
    Coifman, R.R., Sowa, A.: New methods of controlled total variation reduction for digital functions. SIAM Journal on Numerical Analysis 39(2), 480–498 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Do, M.N., Vetterli, V.: Contourlets. In: Stöckler, J., Welland, G. (eds.) Beyond Wavelets, pp. 1–27. Academic Press, New York (2003)Google Scholar
  10. 10.
    Donoho, D., Flesia, A.: Digital ridgelet transform based on true ridge functions. In: Stöckler, J., Welland, G. (eds.) Beyond Wavelets, pp. 1–33. Academic Press, New York (2003)Google Scholar
  11. 11.
    Donoho, D.L.: De-noising by soft thresholding. IEEE Transactions on Information Theory 41, 613–627 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Donoho, D.L.: Orthonormal ridglets and linear singularities. SIAM Journal on Mathematical Analysis 31(5), 1062–1099 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Förstner, W., Gülch, E.: A fast operator for detection and precise location of distinct points, corners and centres of circular features. In: Proc. ISPRS Intercommission Conference on Fast Processing of Photogrammetric Data, Interlaken, Switzerland, June 1987, pp. 281–305 (1987)Google Scholar
  14. 14.
    Jawerth, B., Lin, P., Sinzinger, E.: Lattice Boltzmann models for anisotropic diffusion of images. Journal of Mathematical Imaging and Vision 11, 231–237 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Meyer, Y.: Oscillating Patterns in Image Processing and Nonlinear Evolution Equations. University Lecture Series, vol. 22. AMS, Providence (2001)zbMATHGoogle Scholar
  16. 16.
    Mrázek, P., Weickert, J.: Rotationally Invariant Wavelet Shrinkage. In: Michaelis, B., Krell, G. (eds.) DAGM 2003. LNCS, vol. 2781, pp. 156–163. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  17. 17.
    Mrázek, P., Weickert, J., Steidl, G.: Diffusion-inspired shrinkage functions and stability results for wavelet denoising. International Journal of Computer Vision 64(2/3), 171–186 (2005)CrossRefGoogle Scholar
  18. 18.
    Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE Transactions on Pattern Analysis and Machine Intelligence 12, 629–639 (1990)CrossRefGoogle Scholar
  19. 19.
    Preußer, T., Rumpf, M.: An adaptive finite element method for large scale image processing. Journal of Visual Communication and Image Representation 11(2), 183–195 (2000)CrossRefGoogle Scholar
  20. 20.
    Shen, J.: A note on wavelets and diffusion. Journal of Computational Analysis and Applications 5(1), 147–159 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Simoncelli, E.P.: Design of multidimensional derivative filters. In: Proc. 1994 IEEE International Conference on Image Processing, Austin, TX, November 1994, vol. 1, pp. 790–793 (1994)Google Scholar
  22. 22.
    Sochen, N., Kimmel, R., Bruckstein, F.: Diffusions and confusions in signal and image processing. Journal of Mathematical Imaging and Vision 14(3), 195–210 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Steidl, G., Weickert, J., Brox, T., Mrázek, P., Welk, M.: On the equivalence of soft wavelet shrinkage, total variation diffusion, total variation regularization, and SIDEs. SIAM Journal on Numerical Analysis 42(2), 686–713 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Wang, W.: On the design of optimal derivative filters for coherence-enhancing diffusion filtering. In: Proc. 2004 International Conference on Computer Graphics, Imaging and Visualization, Penang, Malaysia, July 2004, pp. 35–40. IEEE Computer Society Press, Los Alamitos (2004)Google Scholar
  25. 25.
    Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)Google Scholar
  26. 26.
    Weickert, J., Scharr, H.: A scheme for coherence-enhancing diffusion filtering with optimized rotation invariance. Journal of Visual Communication and Image Representation 13(1/2), 103–118 (2002)CrossRefGoogle Scholar
  27. 27.
    Weickert, J., Steidl, G., Mrázek, P., Welk, M., Brox, T.: Diffusion filters and wavelets: What can they learn from each other? In: Paragios, N., Chen, Y., Faugeras, O. (eds.) The Handbook of Mathematical Models in Computer Vision, Springer, New York (2005)Google Scholar
  28. 28.
    Welk, M., Weickert, J., Steidl, G.: A Four-Pixel Scheme for Singular Differential Equations. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale-Space 2005. LNCS, vol. 3459, pp. 610–621. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Martin Welk
    • 1
  • Joachim Weickert
    • 1
  • Gabriele Steidl
    • 2
  1. 1.Mathematical Image Analysis Group, Faculty of Mathematics and Computer ScienceSaarland UniversitySaarbrückenGermany
  2. 2.Faculty of Mathematics and Computer ScienceUniversity of MannheimMannheimGermany

Personalised recommendations