Algorithmic Self-assembly by Accretion and by Carving in MGS

  • Antoine Spicher
  • Olivier Michel
  • Jean-Louis Giavitto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3871)

Abstract

We report the use of MGS, a declarative and rule-based language, for the modeling of various self-assembly processes. The approach is illustrated on the fabrication of a fractal pattern, a Sierpinsky triangle, using two approaches: by accretive growth and by carving. The notion of topological collections available in MGSenables the easy and concise modeling of self-assembly processes on various lattice geometries as well as more arbitrary constructions of multi-dimensional objects.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abelson, Allen, Coore, Hanson, Homsy, Knight, Nagpal, Rauch, Sussman, and Weiss.: Amorphous computing. CACM: Communications of the ACM, 43 (2000)Google Scholar
  2. 2.
    Carbone, A., Mao, C., Constantinou, P.E., Ding, B., Kopatsch, J., Sherman, W.B., Seeman, N.C.: 3D fractal DNA assembly from coding, geometry and protection. Natural Computing 3(3), 235–252 (2004)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Eden, M.: In: Yockey, H.P. (ed.) Symposium on Information Theory in Biology, p. 359. Pergamon Press, New York (1958)Google Scholar
  4. 4.
    Giavitto, J.-L.: Invited talk: Topological collections, transformations and their application to the modeling and the simulation of dynamical systems. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 208–233. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Giavitto, J.-L., Michel, O.: Declarative definition of group indexed data structures and approximation of their domains. In: Proceedings of the 3nd International ACM SIGPLAN Conference on Principles and Practice of Declarative Programming (PPDP 2001), ACM Press, New York (2001)Google Scholar
  6. 6.
    Giavitto, J.-L., Michel, O.: Modeling the topological organization of cellular processes. BioSystems 70(2), 149–163 (2003)CrossRefGoogle Scholar
  7. 7.
    Horn, P.: Autonomic computing: IBM’s perspective on the state of information technology. Technical report, IBM Research (October 2001), http://www.research.ibm.com/autonomic/manifesto/autonomic_computing.pdf
  8. 8.
    Kutulakos, K.N., Seitz, S.M.: A theory of shape by space carving. International Journal of Computer Vision 38(3), 199–218 (2000)CrossRefMATHGoogle Scholar
  9. 9.
    Manca, V., Martin-Vide, C., Paun, G.: New computing paradigms suggested by dna computing: computing by carving. Biosystems 52(1-3), 47–54 (1999)CrossRefGoogle Scholar
  10. 10.
    Munkres, J.: Elements of Algebraic Topology. Addison-Wesley, Reading (1984)MATHGoogle Scholar
  11. 11.
    Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of dna sierpinski triangles. PLoS Biol, 2(12):e424 (2004), http://www.plosbiology.org
  12. 12.
    Spicher, A., Michel, O.: Declarative modeling of a neurulation-like process. In: Sixth International Workshop on Information Processing in Cells and Tissues (IPCAT 2005), pp. 304–317 ( August 2005)Google Scholar
  13. 13.
    Spicher, A., Michel, O., Giavitto, J.-L.: A topological framework for the specification and the simulation of discrete dynamical systems. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Stewart, I.: Four encounters with sierpinski’s gasket. Mathematical Intelligencer 17, 52–64 (1995)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Witten, T.A., Sander, L.M.: Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 47, 1400–1403 (1981)CrossRefGoogle Scholar
  16. 16.
    Wolfram, S.: A new kind of science. Wolfram Media (2002)Google Scholar
  17. 17.
    Zykov, V., Mytilinaios, E., Adams, B., Lipson, H.: Self-reproducing machines. Nature 435(7038), 163–164 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Antoine Spicher
    • 1
  • Olivier Michel
    • 1
  • Jean-Louis Giavitto
    • 1
  1. 1.LaMI UMR 8042 CNRS – Université d’Evry, GenopoleEvryFrance

Personalised recommendations