Algorithmic Self-assembly by Accretion and by Carving in MGS

  • Antoine Spicher
  • Olivier Michel
  • Jean-Louis Giavitto
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3871)


We report the use of MGS, a declarative and rule-based language, for the modeling of various self-assembly processes. The approach is illustrated on the fabrication of a fractal pattern, a Sierpinsky triangle, using two approaches: by accretive growth and by carving. The notion of topological collections available in MGSenables the easy and concise modeling of self-assembly processes on various lattice geometries as well as more arbitrary constructions of multi-dimensional objects.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abelson, Allen, Coore, Hanson, Homsy, Knight, Nagpal, Rauch, Sussman, and Weiss.: Amorphous computing. CACM: Communications of the ACM, 43 (2000)Google Scholar
  2. 2.
    Carbone, A., Mao, C., Constantinou, P.E., Ding, B., Kopatsch, J., Sherman, W.B., Seeman, N.C.: 3D fractal DNA assembly from coding, geometry and protection. Natural Computing 3(3), 235–252 (2004)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Eden, M.: In: Yockey, H.P. (ed.) Symposium on Information Theory in Biology, p. 359. Pergamon Press, New York (1958)Google Scholar
  4. 4.
    Giavitto, J.-L.: Invited talk: Topological collections, transformations and their application to the modeling and the simulation of dynamical systems. In: Nieuwenhuis, R. (ed.) RTA 2003. LNCS, vol. 2706, pp. 208–233. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  5. 5.
    Giavitto, J.-L., Michel, O.: Declarative definition of group indexed data structures and approximation of their domains. In: Proceedings of the 3nd International ACM SIGPLAN Conference on Principles and Practice of Declarative Programming (PPDP 2001), ACM Press, New York (2001)Google Scholar
  6. 6.
    Giavitto, J.-L., Michel, O.: Modeling the topological organization of cellular processes. BioSystems 70(2), 149–163 (2003)CrossRefGoogle Scholar
  7. 7.
    Horn, P.: Autonomic computing: IBM’s perspective on the state of information technology. Technical report, IBM Research (October 2001),
  8. 8.
    Kutulakos, K.N., Seitz, S.M.: A theory of shape by space carving. International Journal of Computer Vision 38(3), 199–218 (2000)CrossRefMATHGoogle Scholar
  9. 9.
    Manca, V., Martin-Vide, C., Paun, G.: New computing paradigms suggested by dna computing: computing by carving. Biosystems 52(1-3), 47–54 (1999)CrossRefGoogle Scholar
  10. 10.
    Munkres, J.: Elements of Algebraic Topology. Addison-Wesley, Reading (1984)MATHGoogle Scholar
  11. 11.
    Rothemund, P.W.K., Papadakis, N., Winfree, E.: Algorithmic self-assembly of dna sierpinski triangles. PLoS Biol, 2(12):e424 (2004),
  12. 12.
    Spicher, A., Michel, O.: Declarative modeling of a neurulation-like process. In: Sixth International Workshop on Information Processing in Cells and Tissues (IPCAT 2005), pp. 304–317 ( August 2005)Google Scholar
  13. 13.
    Spicher, A., Michel, O., Giavitto, J.-L.: A topological framework for the specification and the simulation of discrete dynamical systems. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Stewart, I.: Four encounters with sierpinski’s gasket. Mathematical Intelligencer 17, 52–64 (1995)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Witten, T.A., Sander, L.M.: Diffusion-limited aggregation, a kinetic critical phenomenon. Phys. Rev. Lett. 47, 1400–1403 (1981)CrossRefGoogle Scholar
  16. 16.
    Wolfram, S.: A new kind of science. Wolfram Media (2002)Google Scholar
  17. 17.
    Zykov, V., Mytilinaios, E., Adams, B., Lipson, H.: Self-reproducing machines. Nature 435(7038), 163–164 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Antoine Spicher
    • 1
  • Olivier Michel
    • 1
  • Jean-Louis Giavitto
    • 1
  1. 1.LaMI UMR 8042 CNRS – Université d’Evry, GenopoleEvryFrance

Personalised recommendations