The PASCAL Recognising Textual Entailment Challenge

  • Ido Dagan
  • Oren Glickman
  • Bernardo Magnini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3944)

Abstract

This paper describes the PASCAL Network of Excellence first Recognising Textual Entailment (RTE-1) Challenge benchmark. The RTE task is defined as recognizing, given two text fragments, whether the meaning of one text can be inferred (entailed) from the other. This application-independent task is suggested as capturing major inferences about the variability of semantic expression which are commonly needed across multiple applications. The Challenge has raised noticeable attention in the research community, attracting 17 submissions from diverse groups, suggesting the generic relevance of the task.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bacchus, F.: Representing and Reasoning with Probabilistic Knowledge. MIT Press, Cambridge (1990)Google Scholar
  2. 2.
    Bar-Haim, R., Szpektor, I., Glickman, O.: Definition and Analysis of Intermediate Entailment Levels. In: ACL 2005 Workshop on Empirical Modeling of Semantic Equivalence and Entailment (2005)Google Scholar
  3. 3.
    Chierchia, G., McConnell-Ginet, S.: Meaning and grammar: An introduction to semantics, 2nd edn. MIT Press, Cambridge (2001)Google Scholar
  4. 4.
    Condoravdi, C., Crouch, D., de Paiva, V., Stolle, R., Bobrow, D.G.: Entailment, intensionality and text understanding. In: HLT-NAACL Workshop on Text Meaning (2003)Google Scholar
  5. 5.
    Corley, C., Mihalcea, R.: Measuring the Semantic Similarity of Texts. In: Proceedings of the ACL Workshop on Empirical Modeling of Semantic Equivalence and Entailment, Ann Arbor, June 2005, 1318 pages (2005)Google Scholar
  6. 6.
    Dagan, I., Glickman, O.: Probabilistic Textual Entailment: Generic Applied Modeling of Language Variability. In: PASCAL workshop on Learning Methods for Text Understanding and Mining, Grenoble, France, January 26- 29 (2004)Google Scholar
  7. 7.
    Glickman, O., Dagan, I., Koppel, M.: A Lexical Alignment Model for Probabilistic Textual Entailment. In: Quiñonero-Candela, J., et al. (eds.) MLCW 2005. LNCS (LNAI), vol. 3944, pp. 287–298. Springer, Heidelberg (2006)Google Scholar
  8. 8.
    Halpern, J.Y.: An analysis of first-order logics of probability. Artificial Intelligence 46, 311–350 (1990)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Keefe, R., Smith, P. (eds.): Vagueness: A Reader. MIT Press, Cambridge (1997)Google Scholar
  10. 10.
    Lukasiewicz, J.: Selected Works. In: Borkowski, L. (ed.). North Holland, London (1970)Google Scholar
  11. 11.
    Marsi, E., Krahmer, E.: Classification of Semantic Relations by Humans and Machines. In: Proceedings of the ACL Workshop on Empirical Modeling of Semantic Equivalence and Entailment (2005)Google Scholar
  12. 12.
    Monz, C., de Rijke, M.: Light-Weight Entailment Checking for Computational Semantics. In: The third workshop on inference in computational semantics, ICoS-3 (2001)Google Scholar
  13. 13.
    Vanderwende, L., Dolan, W.B.: What Syntax can Contribute in the Entailment Task. In: Quiñonero-Candela, J., et al. (eds.) MLCW 2005. LNCS (LNAI), vol. 3944, pp. 205–216. Springer, Heidelberg (2006)Google Scholar
  14. 14.
    Szpektor, I., Tanev, H., Dagan, I., Coppola, B.: Scaling Web-based Acquisition of Entailment Relations. In: Empirical Methods in Natural Language Processing (EMNLP) (2004)Google Scholar
  15. 15.
    Zadeh, L.: Fuzzy sets. Information and Control 8 (1965)Google Scholar
  16. 16.
    Zaenen, A., Karttunen, L., Crouch, R.: Local Textual Inference: Can it be Defined or Circumscribed? In: Proceedings of the ACL Workshop on Empirical Modeling of Semantic Equivalence and Entailment (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ido Dagan
    • 1
  • Oren Glickman
    • 1
  • Bernardo Magnini
    • 2
  1. 1.Bar Ilan UniversityRamat GanIsrael
  2. 2.ITC-irstTrentoItaly

Personalised recommendations