The 2005 PASCAL Visual Object Classes Challenge

  • Mark Everingham
  • Andrew Zisserman
  • Christopher K. I. Williams
  • Luc Van Gool
  • Moray Allan
  • Christopher M. Bishop
  • Olivier Chapelle
  • Navneet Dalal
  • Thomas Deselaers
  • Gyuri Dorkó
  • Stefan Duffner
  • Jan Eichhorn
  • Jason D. R. Farquhar
  • Mario Fritz
  • Christophe Garcia
  • Tom Griffiths
  • Frederic Jurie
  • Daniel Keysers
  • Markus Koskela
  • Jorma Laaksonen
  • Diane Larlus
  • Bastian Leibe
  • Hongying Meng
  • Hermann Ney
  • Bernt Schiele
  • Cordelia Schmid
  • Edgar Seemann
  • John Shawe-Taylor
  • Amos Storkey
  • Sandor Szedmak
  • Bill Triggs
  • Ilkay Ulusoy
  • Ville Viitaniemi
  • Jianguo Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3944)

Abstract

The PASCAL Visual Object Classes Challenge ran from February to March 2005. The goal of the challenge was to recognize objects from a number of visual object classes in realistic scenes (i.e. not pre-segmented objects). Four object classes were selected: motorbikes, bicycles, cars and people. Twelve teams entered the challenge. In this chapter we provide details of the datasets, algorithms used by the teams, evaluation criteria, and results achieved.

References

  1. 1.
    Agarwal, S., Awan, A., Roth, D.: Learning to detect objects in images via a sparse, part-based representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(11), 1475–1490 (2004)CrossRefGoogle Scholar
  2. 2.
    Barker, M., Rayens, W.: Partial least squares for discrimination. Journal of Chemometrics 17, 166–173 (2003)CrossRefGoogle Scholar
  3. 3.
    Barnard, K., Duygulu, P., Forsyth, D., Freitas, N., Blei, D., Jordan, M.I.: Matching words and pictures. Journal of Machine Learning Research 3, 1107–1135 (2003)MATHGoogle Scholar
  4. 4.
    Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford (1995)MATHGoogle Scholar
  5. 5.
    Borenstein, E., Ullman, S.: Class-specific, top-down segmentation. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 109–122. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  6. 6.
    Chang, C.-C., Lin, C.-J.: LIBSVM: a library for support vector machines (2001), Software available at: http://www.csie.ntu.edu.tw/~cjlin/libsvm
  7. 7.
    Chapelle, O., Haffner, P., Vapnik, V.: Support vector machines for histogrambased image classification. IEEE Transactions on Neural Networks 10(5), 1055–1064 (1999)CrossRefGoogle Scholar
  8. 8.
    Comaniciu, D., Meer, P.: Distribution free decomposition of multivariate data. Pattern Analysis and Applications 2, 22–30 (1999)CrossRefMATHGoogle Scholar
  9. 9.
    Comaniciu, D., Ramesh, V., Meer, P.: The variable bandwidth mean shift and data-driven scale selection. In: Proceedings of the 8th IEEE International Conference on Computer Vision, Vancouver, Canada, July 2001, vol. 1, pp. 438–445 (2001)Google Scholar
  10. 10.
    Csurka, G., Dance, C., Fan, L., Williamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: ECCV 2004 Workshop on Statistical Learning in Computer Vision, pp. 59–74 (2004)Google Scholar
  11. 11.
    Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, June 2005, pp. 886–893 (2005)Google Scholar
  12. 12.
    Deselaers, T., Keysers, D., Ney, H.: Discriminative training for object recognition using image patches. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, June 2005, vol. 2, pp. 157–162 (2005)Google Scholar
  13. 13.
    Deselaers, T., Keysers, D., Ney, H.: Improving a discriminative approach to object recognition using image patches. In: Kropatsch, W.G., Sablatnig, R., Hanbury, A. (eds.) DAGM 2005. LNCS, vol. 3663, pp. 326–333. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  14. 14.
    Dorko, G., Schmid, C.: Selection of scale-invariant parts for object class recognition. In: Proceedings of the 9th IEEE International Conference on Computer Vision, Nice, France, October 2003, pp. 634–640 (2003)Google Scholar
  15. 15.
    Dorkó, G., Schmid, C.: Object class recognition using discriminative local features. Technical report, INRIA (February 2005)Google Scholar
  16. 16.
    Eichhorn, J., Chapelle, O.: Object categorization with SVM: kernels for local features. Technical report, Max Planck Institute for Biological Cybernetics (July 2004)Google Scholar
  17. 17.
    Fei-Fei, L., Fergus, R., Perona, P.: Learning generative visual models from few training examples: an incremental bayesian approach tested on 101 object categories. In: Proceedings of the Workshop on Generative-Model Based Vision, Washington, DC, USA (June 2004)Google Scholar
  18. 18.
    Fergus, R., Perona, P., Zisserman, A.: Object class recognition by unsupervised scale-invariant learning. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Madison, Wisconsin, USA (June 2003)Google Scholar
  19. 19.
    Fritz, M., Leibe, B., Caputo, B., Schiele, B.: Integrating representative and discriminant models for object category detection. In: Proceedings of the 10th IEEE International Conference on Computer Vision, Beijing, China (October 2005)Google Scholar
  20. 20.
    Garcia, C., Delakis, M.: Convolutional face finder: A neural architecture for fast and robust face detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 26(11), 1408–1423 (2004)CrossRefGoogle Scholar
  21. 21.
    Harris, C., Stephens, M.: A combined corner and edge detector. In: Proceedings of the 4th Alvey Vision Conference, pp. 147–151 (1988)Google Scholar
  22. 22.
    Joachims, T.: Text categorization with support vector machines: Learning with many relevant features. In: Nédellec, C., Rouveirol, C. (eds.) Proceedings of the 10th European Conference on Machine Learning, Chemnitz, Germany, pp. 137–142. Springer, Heidelberg (1998)Google Scholar
  23. 23.
    Joachims, T.: Making large-scale SVM learning practical. In: Schölkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods - Support Vector Learning. The MIT Press, Cambridge (1999)Google Scholar
  24. 24.
    Jurie, F., Triggs, W.: Creating efficient codebooks for visual recognition. In: Proceedings of the 10th IEEE International Conference on Computer Vision, Beijing, China (2005)Google Scholar
  25. 25.
    Kondor, R., Jebara, T.: A kernel between sets of vectors. In: Proceedings of the 20th International Conference on Machine Learning, Washingon, DC, USA (2003)Google Scholar
  26. 26.
    Laaksonen, J., Koskela, M., Oja, E.: PicSOM—Self-organizing image retrieval with MPEG-7 content descriptions. IEEE Transactions on Neural Networks, Special Issue on Intelligent Multimedia Processing 13(4), 841–853 (2002)CrossRefMATHGoogle Scholar
  27. 27.
    Larlus, D.: Creation de vocabulaires visuels efficaces pour la categorization d’images. Master’s thesis, Image Vision Robotic, INPG and UJF (June 2005)Google Scholar
  28. 28.
    Leibe, B., Leonardis, A., Schiele, B.: Combined object categorization and segmentation with an implicit shape model. In: ECCV 2004 Workshop on Statistical Learning in Computer Vision, Prague, Czech Republic, May 2004, pp. 17–32 (2004)Google Scholar
  29. 29.
    Leibe, B., Schiele, B.: Scale invariant object categorization using a scale-adaptive mean-shift search. In: Proceedings of the 26th DAGM Annual Pattern Recognition Symposium, Tuebingen, Germany (August 2004)Google Scholar
  30. 30.
    Leibe, B., Seemann, E., Schiele, B.: Pedestrian detection in crowded scenes. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA (June 2005)Google Scholar
  31. 31.
    Lindeberg, T.: Feature detection with automatic scale selection. International Journal of Computer Vision 30(2), 79–116 (1998)CrossRefGoogle Scholar
  32. 32.
    Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)CrossRefGoogle Scholar
  33. 33.
    Meng, H., Shawe-Taylor, J., Szedmak, S., Farquhar, J.R.D.: Support vector machine to synthesise kernels. In: Proceedings of the Sheffield Machine Learning Workshop, Sheffield, UK (2004)Google Scholar
  34. 34.
    Mettu, R.R., Plaxton, C.G.: The online median problem. In: Proceedings of the 41st Annual Symposium on Foundations of Computer Science, p. 339. IEEE Computer Society, Los Alamitos (2000)CrossRefGoogle Scholar
  35. 35.
    Mikolajczyk, K., Leibe, B., Schiele, B.: Local features for object class recognition. In: Proceedings of the 10th IEEE International Conference on Computer Vision, Beijing, China (October 2005)Google Scholar
  36. 36.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. In: Proceedings of the IEEE International Conference on Computer Vision and Pattern Recognition, Madison, Wisconsin, USA, June 2003, vol. 2, pp. 257–263 (2003)Google Scholar
  37. 37.
    Mikolajczyk, K., Schmid, C.: Scale and affine invariant interest point detectors. International Journal of Computer Vision 60, 63–86 (2004)CrossRefGoogle Scholar
  38. 38.
    Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence 27(10), 1615–1630 (2005)CrossRefGoogle Scholar
  39. 39.
    Opelt, A., Fussenegger, A., Pinz, A., Auer, P.: Weak hypotheses and boosting for generic object detection and recognition. In: Proceedings of the 8th European Conference on Computer Vision, Prague, Czech Republic, vol. 2, pp. 71–84 (2004)Google Scholar
  40. 40.
    Schölkopf, B., Smola, A.: Learning with Kernels: Support Vector Machines, Regularization, Optimization and Beyond. The MIT Press, Cambridge (2002)Google Scholar
  41. 41.
    Seemann, E., Leibe, B., Mikolajczyk, K., Schiele, B.: An evaluation of local shape-based features for pedestrian detection. In: Proceedings of the 16th British Machine Vision Conference, Oxford, UK (2005)Google Scholar
  42. 42.
    Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)CrossRefMATHGoogle Scholar
  43. 43.
    Weber, M., Welling, M., Perona, P.: Unsupervised learning of models for recognition. In: Proceedings of the 6th European Conference on Computer Vision, Dublin, Ireland, pp. 18–32 (2000)Google Scholar
  44. 44.
    Zhang, J., Marszalek, M., Lazebnik, S., Schmid, C.: Local features and kernels for classification of texture and object categories: An in-depth study. Technical report, INRIA (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Mark Everingham
    • 1
  • Andrew Zisserman
    • 1
  • Christopher K. I. Williams
    • 2
  • Luc Van Gool
    • 3
  • Moray Allan
    • 2
  • Christopher M. Bishop
    • 10
  • Olivier Chapelle
    • 11
  • Navneet Dalal
    • 8
  • Thomas Deselaers
    • 4
  • Gyuri Dorkó
    • 8
  • Stefan Duffner
    • 6
  • Jan Eichhorn
    • 11
  • Jason D. R. Farquhar
    • 12
  • Mario Fritz
    • 5
  • Christophe Garcia
    • 6
  • Tom Griffiths
    • 2
  • Frederic Jurie
    • 8
  • Daniel Keysers
    • 4
  • Markus Koskela
    • 7
  • Jorma Laaksonen
    • 7
  • Diane Larlus
    • 8
  • Bastian Leibe
    • 5
  • Hongying Meng
    • 12
  • Hermann Ney
    • 4
  • Bernt Schiele
    • 5
  • Cordelia Schmid
    • 8
  • Edgar Seemann
    • 5
  • John Shawe-Taylor
    • 12
  • Amos Storkey
    • 2
  • Sandor Szedmak
    • 12
  • Bill Triggs
    • 8
  • Ilkay Ulusoy
    • 9
  • Ville Viitaniemi
    • 7
  • Jianguo Zhang
    • 8
  1. 1.University of OxfordOxfordUK
  2. 2.University of EdinburghEdinburghUK
  3. 3.ETH ZentrumZurichSwitzerland
  4. 4.RWTH Aachen UniversityAachenGermany
  5. 5.TU-DarmstadtDarmstadtGermany
  6. 6.France TélécomCesson SévignéFrance
  7. 7.Helsinki University of TechnologyHelsinkiFinland
  8. 8.INRIA Rhône-AlpesMontbonnotFrance
  9. 9.Middle East Technical UniversityAnkaraTurkey
  10. 10.Microsoft ResearchCambridgeUK
  11. 11.Max Planck Institute for Biological CyberneticsTübingenGermany
  12. 12.University of SouthamptonSouthamptonUK

Personalised recommendations