Beyond the Web: Retrieval in Social Information Spaces

  • Sebastian Marius Kirsch
  • Melanie Gnasa
  • Armin B. Cremers
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3936)


We research whether the inclusion of information about an information user’s social environment and his position in the social network of his peers leads to an improval in search effectiveness.

Traditional information retrieval methods fail to address the fact that information production and consumption are social activities. We ameliorate this problem by extending the domain model of information retrieval to include social networks.

We describe a technique for information retrieval in such an enviroment and evaluate it in comparison to vector space retrieval.


Social Network Information Retrieval Information Retrieval System Retrieval Technique Social Software 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: Bringing order to the Web. Technical report, Stanford University (1999)Google Scholar
  2. 2.
    Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. Journal of the ACM 46, 604–632 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Craswell, N., Hawking, D.: Overview of the TREC-2004 Web track. In: Voorhees, E.M., Buckland, L.P. (eds.) Proceedings of the Thirteenths Text REtrieval Conference (TREC 2004). NIST Special Publications 500-261, Gaithersburg (2004); National Institute of Standards and TechnologyGoogle Scholar
  4. 4.
    Kautz, H., Selman, B., Shah, M.: The hidden web. AI Magazine 18, 27–36 (1997)Google Scholar
  5. 5.
    Kautz, H., Selman, B., Shah, M.: Referral web: combining social networks and collaborative filtering. Commununications of the ACM 40, 63–65 (1997)CrossRefGoogle Scholar
  6. 6.
    Freyne, J., Smyth, B.: An experiment in social search. In: De Bra, P.M.E., Nejdl, W. (eds.) AH 2004. LNCS, vol. 3137, pp. 95–103. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Gnasa, M., Won, M., Cremers, A.B.: Three pillars for congenial web search. Continuous evaluation for enhancing web search effectiveness. Journal of Web Engineering 3, 252–280 (2004)Google Scholar
  8. 8.
    Lueg, C., Fisher, D. (eds.): From Usenet to CoWebs. Interacting with social information spaces. Springer, Heidelberg (2003)zbMATHGoogle Scholar
  9. 9.
    Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American 284, 34–43 (2001)CrossRefGoogle Scholar
  10. 10.
    Dublin CoreMetadata Initiative: DCMIMetadataTerms (2005),
  11. 11.
    Brickley, D., Miller, L.: FOAF vocabulary specification (2005),
  12. 12.
    Six Apart Ltd.: LiveJournal bot policy (2006),
  13. 13.
    Flake, G.W., Tsioutsiouliklis, K., Zhukov, L.: Methods for mining web communities: Bibliometric, spectral, and flow. In: Poulovassilis, A., Levene, M. (eds.) Web Dynamics, pp. 45–68. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  14. 14.
    Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998)CrossRefzbMATHGoogle Scholar
  15. 15.
    Silverstein, C., Marais, H., Henzinger, M., Moricz, M.: Analysis of a very large web search engine query log. In: SIGIR Forum, vol. 33, pp. 6–12 (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sebastian Marius Kirsch
    • 1
  • Melanie Gnasa
    • 1
  • Armin B. Cremers
    • 1
  1. 1.Institute of Computer Science IIIUniversity of BonnBonnGermany

Personalised recommendations