Using Query Profiles for Clarification

  • Henning Rode
  • Djoerd Hiemstra
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3936)


The following paper proposes a new kind of relevance feedback. It shows how so-called query profiles can be employed for disambiguation and clarification.

Query profiles provide useful summarized previews on the retrieved answers to a given query. They outline ambiguity in the query and when combined with appropriate means of interactivity allow the user to easily adapt the final ranking. Statistical analysis of the profiles even enables the retrieval system to automatically suggest search restrictions or preferences. The paper shows a preliminary experimental study of the proposed feedback methods within the setting of TREC’s interactive HARD track.


Information Retrieval Relevance Feedback Query Term Query Expansion User Feedback 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Belkin, N.: Interaction with texts: Information retrieval as information-seeking behavior. In: Information Retrieval 1993, Von der Modellierung zur Anwendung, Universitaetsverlag Konstanz, pp. 55–66 (1993)Google Scholar
  2. 2.
    Salton, G., Buckley, C.: Improving retrieval performance by relevance feedback. JASIS 41(4), 288–297 (1990)CrossRefGoogle Scholar
  3. 3.
    Harman, D.: Relevance feedback revisited. In: Belkin, N., Ingwersen, P., Pejtersen, A. (eds.) Proceedings of the 15th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Copenhagen, Denmark, June 21-24, pp. 1–10. ACM, New York (1992)Google Scholar
  4. 4.
    Allan, J.: Hard track overview in trec 2003: High accuracy retrieval from documents. In: TREC, pp. 24–37 (2003)Google Scholar
  5. 5.
    Allan, J.: Hard track overview in trec 2004: High accuracy retrieval from documents. In: TREC, pp. 25–35 (2004)Google Scholar
  6. 6.
    Netscape: Open directory project (2005), (date retrieved 03-11-2005)
  7. 7.
    Godin, R., Gecsei, J., Pichet, C.: Design of a browsing interface for information retrieval. In: Belkin, N., van Rijsbergen, C. (eds.) SIGIR 1989, 12th International Conference on Research and Development in Information Retrieval Proceedings, Cambridge, Massachusetts, USA, June 25-28, pp. 32–39. ACM, New York (1989)Google Scholar
  8. 8.
    Diaz, F., Jones, R.: Using temporal profiles of queries for precision prediction. In: Sanderson, M., Järvelin, K., Allan, J., Bruza, P. (eds.) Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 18–24. ACM, Sheffield (2004)Google Scholar
  9. 9.
    Palmer, C., Pesenti, J., Valdés-Pérez, R., Christel, M., Hauptmann, A., Ng, D., Wactlar, H.: Demonstration of hierarchical document clustering of digital library retrieval results. In: ACM/IEEE Joint Conference on Digital Libraries, JCDL 2001 Proceedings, Roanoke, Virginia, USA, June 24-28, p. 451. ACM, New York (2001)Google Scholar
  10. 10.
    Sieg, A., Mobasher, B., Lytinen, S., Burke, R.: Using concept hierarchies to enhance user queries in web-based information retrieval. In: Proceedings of the IASTED International Conference on Artificial Intelligence and Applications (2004)Google Scholar
  11. 11.
    Chatfiled, C.: The Analysis of Time Series, 3rd edn. Chapman and Hall, Boca Raton (1984)Google Scholar
  12. 12.
    Kleinberg, J.: Bursty and hierarchical structure in streams. Data Mining and Knowledge Discovery 7(4), 373–397 (2003)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Rode, H., Hiemstra, D.: Conceptual Language Models for Context-Aware Text Retrieval. In: Proceedings of the 13th Text REtrieval Conference Proceedings (TREC) (2005)Google Scholar
  14. 14.
    Sebastiani, F.: Text categorization. In: Zanasi, A. (ed.) Text Mining and its Applications to Intelligence, CRM and Knowledge Management, pp. 109–129. WIT Press, Southampton (2005)CrossRefGoogle Scholar
  15. 15.
    Kraaij, W.: Variations on language modeling for information retrieval. PhD thesis, University of Twente, Netherlands (2004)Google Scholar
  16. 16.
    Croft, B.: Combining approaches to information retrieval. In: Croft, B. (ed.) Advances in Information Retrieval: Recent Research From the Center for Intelligent Information Retrieval, pp. 1–36. Kluwer Academic Publishers, New York (2002)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Henning Rode
    • 1
  • Djoerd Hiemstra
    • 1
  1. 1.University of TwenteThe Netherlands

Personalised recommendations