Hybrid Symmetric Encryption Using Known-Plaintext Attack-Secure Components

  • Kazuhiko Minematsu
  • Yukiyasu Tsunoo
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3935)

Abstract

This paper describes a hybrid symmetric cipher that combines a strongly-secure function, e.g., a pseudorandom function (PRF), which is secure against any Chosen-Plaintext Attack, and a weak PRF, which is only secure against any Known-Plaintext Attack. Although this kind of composition is potentially faster than the modes of PRFs, it has not been extensively studied. Our main contribution is in proposing a new block cipher scheme that is suitable for hybrid composition. We describe efficient hybrid constructions of pseudorandom permutation and strong pseudorandom permutation for an arbitrarily large block size using our new scheme.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aiello, W., Rajagopalan, S., Venkatesan, R.: High-Speed Pseudorandom Number Generation with Small Memory. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 290–304. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  2. 2.
    Anderson, R., Biham, E.: Two Practical and Provably Secure Block Ciphers: BEAR and LION. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 113–120. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Desai, A., Jokipii, E., Rogaway, P.: A Concrete Security Treatment of Symmetric Encryption. In: Proceedings of the 38th Annual Symposium on Foundations of Computer Science, FOCS 1997, pp. 394–403 (1997)Google Scholar
  4. 4.
    Biryukov, A.: New 128-bit Key Stream Cipher LEX. ECRYPT Stream Cipher Project Report, available from: http://www.ecrypt.eu.org/stream/
  5. 5.
    Daemen, J., Govaerts, R., Vandewalle, J.: Resynchronization Weaknesses in Synchronous Stream Ciphers. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 159–167. Springer, Heidelberg (1994)Google Scholar
  6. 6.
    Damgård, I., Nielsen, J.: Expanding Pseudorandom Functions; or: From Known-Plaintext Security to Chosen-Plaintext Security. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 449–464. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Goldreich, O., Goldwasser, S., Micali, S.: How to Construct Random Functions. Journal of the ACM 33(4), 792–807 (1986)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Goldreich, O.: Modern Cryptography, Probabilistic Proofs and Pseudorandomness. Springer, HeidelbergGoogle Scholar
  9. 9.
    Halevi, S., Krawczyk, H.: MMH:Software Message Authentication in the Gbit/second rates. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 172–189. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  10. 10.
    Halevi, S., Rogaway, P.: A Tweakable Enciphering Mode. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 482–499. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Halevi, S., Rogaway, P.: A Parallelizable Enciphering Mode. In: Okamoto, T. (ed.) CT-RSA 2004. LNCS, vol. 2964, pp. 292–304. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Iwata, T., Kurosawa, K.: On the Universal Hash Functions in Luby-Rackoff Cipher. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 226–236. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  13. 13.
    Luby, M., Rackoff, C.: How to Construct Pseudo-random Permutations from Pseudo-random functions. SIAM J. Computing 17(2), 373–386 (1988)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Lucks, S.: Faster Luby-Rackoff Ciphers. In: Gollmann, D. (ed.) FSE 1996. LNCS, vol. 1039, pp. 189–203. Springer, Heidelberg (1996)CrossRefGoogle Scholar
  15. 15.
    Maurer, U.: A Simplified and Generalized Treatment of Luby-Rackoff Pseudorandom Permutation Generators. In: Rueppel, R.A. (ed.) EUROCRYPT 1992. LNCS, vol. 658, pp. 239–255. Springer, Heidelberg (1993)Google Scholar
  16. 16.
    Maurer, U., Massey, J.L.: Cascade Ciphers: The Importance of Being First. J. Cryptology 6(1), 55–61 (1993)CrossRefMATHGoogle Scholar
  17. 17.
    Maurer, U.: Indistinguishability of Random Systems. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 110–132. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  18. 18.
    Maurer, U., Pietrzak, K.: Composition of Random Systems: When Two Weak Make One Strong. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 410–427. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Minier, M., Gilbert, H.: New Results on the Pseudorandomness of Some Blockcipher Constructions. In: Matsui, M. (ed.) FSE 2001. LNCS, vol. 2355, pp. 248–266. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  20. 20.
    Moriai, S., Vaudenay, S.: On the Pseudorandomness of Top-Level Schemes of Block Ciphers. In: Okamoto, T. (ed.) ASIACRYPT 2000. LNCS, vol. 1976, pp. 289–302. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  21. 21.
    Myers, S.: Black-Box Composition Does Not Imply Adaptive Security. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 189–206. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. 22.
    Naor, M., Reingold, O.: Number-theoretic Constructions of Efficient Pseudo-random Functions. In: 38th Annual Symposium on Foundations of Computer Science, FOCS 1997, pp. 458–467 (1997)Google Scholar
  23. 23.
    Naor, M., Reingold, O.: From Unpredictability to Indistinguishability: A Simple Construction of Pseudo-Random Functions from MACs (Extended Abstract). In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 267–282. Springer, Heidelberg (1998)Google Scholar
  24. 24.
    Naor, M., Reingold, O.: Synthesizers and their application to the parallel construction of pseudo-random functions. J. of Computer and Systems Sciences 58(2), 336–375 (1999)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Naor, M., Reingold, O.: On the Construction of Pseudorandom Permutations: Luby-Rackoff Revisited. Journal of Cryptology 12(1), 29–66 (1999)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    Naor, M., Reingold, O.: The NR Mode of Operation (manuscript), available from: http://www.wisdom.weizmann.ac.il/~naor/PAPERS/nr-mode.ps
  27. 27.
    Patel, S., Ramzan, Z., Sundaram, G.: Towards Making Luby-Rackoff Ciphers Optimal and Practical. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 171–185. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  28. 28.
    Patarin, J.: Security of Random Feistel Schemes with 5 or More Rounds. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 106–122. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  29. 29.
    Vaudenay, S.: Feistel Ciphers with L 2-Decorrelation. In: Tavares, S., Meijer, H. (eds.) SAC 1998. LNCS, vol. 1556, pp. 1–14. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  30. 30.
    Vaudenay, S.: Provable Security for Block Ciphers by Decorrelation. In: Meinel, C., Morvan, M. (eds.) STACS 1998. LNCS, vol. 1373, pp. 249–275. Springer, Heidelberg (1998)Google Scholar
  31. 31.
    Vaudenay, S.: Adaptive-Attack Norm for Decorrelation and Super-Pseudorandomness. In: Heys, H.M., Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp. 49–61. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  32. 32.
    Wegman, M., Carter, L.: New Hash Functions and Their Use in Authentication and Set Equality. Journal of Computer and System Sciences 22, 265–279 (1981)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    Zheng, Y., Matsumoto, T., Imai, H.: On the Construction of Block Ciphers Provably Secure and Not Relying on Any Unproved Hypotheses. In: Brassard, G. (ed.) CRYPTO 1989. LNCS, vol. 435, pp. 461–480. Springer, Heidelberg (1990)Google Scholar
  34. 34.
    ECRYPT Stream Cipher Project, http://www.ecrypt.eu.org/stream/
  35. 35.
    Security in Storage Working Group, An IEEE Information Assurance Activity, http://www.siswg.org

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Kazuhiko Minematsu
    • 1
  • Yukiyasu Tsunoo
    • 1
  1. 1.NEC CorporationKawasakiJapan

Personalised recommendations