Self-adaptation and Dynamic Environment Experiments with Evolvable Virtual Machines

  • Mariusz Nowostawski
  • Lucien Epiney
  • Martin Purvis
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3910)


Increasing complexity of software applications forces researchers to look for automated ways of programming and adapting these systems. Self-adapting, self-organising software system is one of the possible ways to tackle and manage higher complexity. A set of small independent problem solvers, working together in a dynamic environment, solving multiple tasks, and dynamically adapting to changing requirements is one way of achieving true self-adaptation in software systems. Our work presents a dynamic multi-task environment and experiments with a self-adapting software system. The Evolvable Virtual Machine (EVM) architecture is a model for building complex hierarchically organised software systems. The intrinsic properties of EVM allow the independent programs to evolve into higher levels of complexity, in a way analogous to multi-level, or hierarchical evolutionary processes. The EVM is designed to evolve structures of self-maintaining, self-adapting ensembles, that are open-ended and hierarchically organised. This article discusses the EVM architecture together with different statistical exploration methods that can be used with it. Based on experimental results, certain behaviours that exhibit self-adaptation in the EVM system are discussed.


Virtual Machine Cellular Automaton Cellular Automaton Random Search Knowledge Diffusion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Eigen, M., Schuster, P.: The Hypercycle: A Principle of Natural Self-Organization. Springer, Heidelberg (1979)CrossRefGoogle Scholar
  2. 2.
    Fogel, D.B. (ed.): Evolutionary Computation – The Fossil Record. IEEE Press, New York (1998)zbMATHGoogle Scholar
  3. 3.
    Koza, J.R., Bennett, F.H., Andre, D., Keane, M.A.: Genetic Programming III: Darwinian Invention and Problem Solving. Morgan Kaufmann Publishers, San Francisco (1999)zbMATHGoogle Scholar
  4. 4.
    Levin, L.A.: Universal sequential search problems. Problems of Information Transmission 9(3), 265–266 (1973)Google Scholar
  5. 5.
    Margulis, L.: Origin of Eukaryotic Cells. University Press, New Haven (1970)Google Scholar
  6. 6.
    Margulis, L.: Symbiosis in Cell Evolution. Freeman & Co., San Francisco (1981)Google Scholar
  7. 7.
    Maturana, H.R., Varela, F.J.: Autopoiesis: The organization of the living. In: Cohen, R.S., Wartofsky, M.W. (eds.) Autopoiesis and Cognition: The Realization of the Living. Boston Studies in the Philosophy of Science, vol. 42. D. Reidel Publishing Company, Dordrech (1980)CrossRefGoogle Scholar
  8. 8.
    Mereschkowsky, K.S.: Uber Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol. Zentralbl. 25, 593–604 (1905)Google Scholar
  9. 9.
    Nowostawski, M., Purvis, M.K., Cranefield, S.: An architecture for self-organising evolvable virtual machines. In: Brueckner, S.A., Di Marzo Serugendo, G., Karageorgos, A., Nagpal, R. (eds.) ESOA 2005. LNCS (LNAI), vol. 3464, pp. 100–122. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Schmidhuber, J.: A general method for incremental self-improvement and multiagent learning. In: Yao, X. (ed.) Evolutionary Computation: Theory and Applications, ch.3, pp. 81–123. Scientific Publishers Co, Singapore (1999)CrossRefGoogle Scholar
  11. 11.
    Schmidhuber., J.: Optimal ordered problem solver. Machine Learning 54, 211–254 (2004)CrossRefzbMATHGoogle Scholar
  12. 12.
    Thom, R.: Structural stability and morphogenesis. Benjamin Addison Wesley, New York (1975)zbMATHGoogle Scholar
  13. 13.
    Vose., M.D.: The Simple Genetic Algorithm: Foundations and Theory. In: A Bradford Book. MIT Press, Cambridge (1999)Google Scholar
  14. 14.
    Wallin., I.: Symbionticism and the Origin of Species. Williams & Wilkins, Baltimore (1927)CrossRefGoogle Scholar
  15. 15.
    Wolfram, S.: Universality and complexity in cellular automata. Physica D 10, 1–35 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Wolfram, S.: A New Kind of Science, 1st edn., May 2002. Wolfram Media, Inc. (2002)Google Scholar
  17. 17.
    Wright, S.: Evolution in mendelian populations. Genetics 16(3), 97–159 (March 1931)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Mariusz Nowostawski
    • 1
  • Lucien Epiney
    • 2
  • Martin Purvis
    • 1
  1. 1.Department Information ScienceUniversity of OtagoDunedinNew Zealand
  2. 2.Swiss Federal Institute of TechnologyEPFLLausanne

Personalised recommendations