On the Role of Simulations in Engineering Self-organising MAS: The Case of an Intrusion Detection System in TuCSoN

  • Luca Gardelli
  • Mirko Viroli
  • Andrea Omicini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3910)


The intrinsic complexity of self-organising MASs (multi-agent systems) suggests the use of formal methods at early stages of the design process in order to predict global system evolutions. In particular, we evaluate the use of simulations of high-level system models to analyse properties of a design, which can anticipate the detection of wrong design choices and the tuning of system parameters, so as to rapidly converge to given overall requirements and performance factors.

We take intrusion detection (ID) as a case, and devise an architecture inspired by principles from human immune systems. This is based on the TuCSoN infrastructure, which provides agents with an environment of artifacts—most notably coordination artifacts and agent coordination contexts. We then use stochastic π-calculus for specifying and running quantitative, large-scale simulations, which allow us to verify the basic applicability of our ID and obtain a preliminary set of its main working parameters.


Multiagent System Intrusion Detection Intrusion Detection System Human Immune System Process Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Horn, P.: Autonomic computing: IBM’s perspective on the state of information technology (2001)Google Scholar
  2. 2.
    Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1), 41–50 (2003)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Abelson, H., Allen, D., Coore, D., Hanson, C., Homsy, G., Thomas, F., Knight, J., Nagpal, R., Rauch, E., Sussman, G.J., Weiss, R.: Amorphous computing. Communications of the ACM 43(5), 74–82 (2000)CrossRefGoogle Scholar
  4. 4.
    Zambonelli, F., Gleizes, M.P., Mamei, M., Tolksdorf, R.: Spray computers: Frontiers of self-organization for pervasive computing. In: 13th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE 2004), Washington, DC, USA, pp. 403–408. IEEE Computer Society, Los Alamitos (2004)CrossRefGoogle Scholar
  5. 5.
    Heylighen, F.: The science of self-organization and adaptivity. In: Knowledge Management, Organizational Intelligence and Learning, and Complexity. The Encyclopedia of Life Support Systems. EOLSS Publishers (2003)Google Scholar
  6. 6.
    Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes, part I/II. Information and Computation 100(1) (1992)Google Scholar
  7. 7.
    Petri, C.A.: Kommunikation mit Automaten. PhD thesis, Institut für Instrumentelle Mathematik, University of Bonn, Bonn, Germany (1962)Google Scholar
  8. 8.
    Bryans, J., Bowman, H., Derrick, J.: Model checking stochastic automata. ACM Trans. Comput. Logic 4(4), 452–492 (2003)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Priami, C.: Stochastic pi-calculus. Computer Journal 38(7), 578–589 (1995)CrossRefGoogle Scholar
  10. 10.
    Phillips, A.: The stochastic Pi machine. SPiM (2005),
  11. 11.
    Phillips, A., Cardelli, L.: Simulating biological systems in the stochastic pi-calculus (2004)Google Scholar
  12. 12.
    Forrest, S., Hofmeyr, S.A., Somayaji, A.: Computer immunology. Communications of the ACM 40(10), 88–96 (1997)CrossRefGoogle Scholar
  13. 13.
    Omicini, A., Zambonelli, F.: Coordination for internet application development. Autonomous Agents and Multi-Agent Systems 2(3), 251–269 (1999)CrossRefGoogle Scholar
  14. 14.
    Omicini, A., Ricci, A., Viroli, M., Castelfranchi, C., Tummolini, L.: Coordination artifacts: Environment-based coordination for intelligent agents. In: Jennings, N.R., Sierra, C., Sonenberg, L., Tambe, M. (eds.) 3rd international Joint Conference on Autonomous Agents and Multiagent Systems (AAMAS 2004), vol. 1, pp. 286–293. ACM, New York (2004)Google Scholar
  15. 15.
    Omicini, A., Ricci, A., Viroli, M.: RBAC for organisation and security in an agent coordination infrastructure. Electronic Notes in Theoretical Computer Science 128(5), 65–85 (2005); Proceedings 2nd International Workshop on Security Issues in Coordination Models, Languages and Systems (SecCo 2004) (30 August 2004)Google Scholar
  16. 16.
    Somayaji, A., Hofmeyr, S., Forrest, S.: Principles of a computer immune system. In: 1997 Workshop on New Security Paradigms (NSPW 1997), pp. 75–82. ACM Press, New York (1997)Google Scholar
  17. 17.
    Debar, H., Marc, D., Andreas, W.: Towards a taxonomy of intrusion-detection systems. Computer Networks: The International Journal of Computer and Telecommunications Networking 31(9), 805–822 (1999)CrossRefGoogle Scholar
  18. 18.
    Forrest, S., Hofmeyr, S.A., Anil, S.: A sense of self for Unix processes. In: 1996 IEEE Symposium on Security and Privacy, pp. 120–128. IEEE Computer Society, Los Alamitos (1996)CrossRefGoogle Scholar
  19. 19.
    Omicini, A.: Towards a notion of agent coordination context. In: Marinescu, D.C., Lee, C. (eds.) Process Coordination and Ubiquitous Computing., pp. 187–200. CRC Press, Boca Raton (2002)Google Scholar
  20. 20.
    Hofmeyr, S.A., Forrest, S.: Immunity by design: an artificial immune system. In: Genetic and Evolutionary Computation Conference (GECCO 1999), pp. 1289–1296 (1999)Google Scholar
  21. 21.
    Milner, R.: The polyadic π-calculus: a tutorial. In: Brauer, F.L., Brauer, W., Schwichtenberg, H. (eds.) International Summer School on Logic Algebra of Specification. Springer, Heidelberg (1993)Google Scholar
  22. 22.
    Brinksma, E., Hermanns, H.: Process algebra and Markov chains. In: Lectures on formal methods and performance analysis: 1st EEF/Euro Summer School on Trends in Computer Science, pp. 183–231. Springer, Heidelberg (2002)Google Scholar
  23. 23.
    Gillespie, D.: Exact stochastic simulation of coupled chemical reactions. The Journal of Physical Chemistry 81(25) (1977)Google Scholar
  24. 24.
    Hassas, S., Foukia, N.: Towards self-organizing computer networks: A complex system perspective. In: Di Marzo Serugendo, G., Karageorgos, A., Rana, O.F., Zambonelli, F. (eds.) ESOA 2003. LNCS (LNAI), vol. 2977, pp. 77–83. Springer, Heidelberg (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Luca Gardelli
    • 1
  • Mirko Viroli
    • 1
  • Andrea Omicini
    • 1
  1. 1.Alma Mater StudiorumUniversità di BolognaCesenaItaly

Personalised recommendations