Data Tables with Similarity Relations: Functional Dependencies, Complete Rules and Non-redundant Bases

  • Radim Bělohlávek
  • Vilém Vychodil
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3882)

Abstract

We study rules \(A \Longrightarrow B\) describing attribute dependencies in tables over domains with similarity relations. \(A \Longrightarrow B\) reads “for any two table rows: similar values of attributes from A imply similar values of attributes from B”. The rules generalize ordinary functional dependencies in that they allow for processing of similarity of attribute values. Similarity is modeled by reflexive and symmetric fuzzy relations. We show a system of Armstrong-like derivation rules and prove its completeness (two versions). Furthermore, we describe a non-redundant basis of all rules which are true in a data table and present an algorithm to compute bases.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abiteboul, S., et al.: The Lowell database research self-assessment. Communications of ACM 48(5), 111–118 (2005)CrossRefGoogle Scholar
  2. 2.
    Armstrong, W.W.: Dependency structures in data base relationships. IFIP Congress, Geneva, Switzerland, pp. 580–583 (1974)Google Scholar
  3. 3.
    Bělohlávek, R.: Fuzzy Relational Systems: Foundations and Principles, New York. Kluwer, Academic/Plenum Publishers (2002)Google Scholar
  4. 4.
    Bělohlávek R., Chlupová M., Vychodil V.: Implications from data with fuzzy attributes. AISTA 2004 in Cooperation with the IEEE Computer Society Proceedings, 2004, 5 pages, ISBN 2–9599776–8–8.Google Scholar
  5. 5.
    Bělohlávek R., Vychodil V.: Functional dependencies of data tables over domains with similarity relations (to appear).Google Scholar
  6. 6.
    Buckles B. P., Petry F. E.: Fuzzy databases in the new era. Proceedings of the 1995 ACM symposium on Applied computing, pp. 497–502, Nashville, Tennessee, ISBN 0-89791-658-1, 1995.Google Scholar
  7. 7.
    Ganter B., Wille R.: Formal Concept Analysis. Mathematical Foundations. Springer, Berlin, 1999.Google Scholar
  8. 8.
    Gerla G.: Fuzzy Logic. Mathematical Tools for Approximate Reasoning. Kluwer, Dordrecht, 2001.Google Scholar
  9. 9.
    Hájek P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht, 1998.Google Scholar
  10. 10.
    Holzer R.: Knowledge Acquisition under Incomplete Knowledge using Methods from Formal Concept Analysis: Part I. Fundamenta Informaticae, 63(1)(2004), 17–39.Google Scholar
  11. 11.
    Klir G. J., Yuan B.: Fuzzy Sets and Fuzzy Logic. Theory and Applications. Prentice Hall, 1995.Google Scholar
  12. 12.
    Maier D.: The Theory of Relational Databases. Computer Science Press, Rockville, 1983.Google Scholar
  13. 13.
    Prade H., Testemale C.: Generalizing database relational algebra for the treatment of incomplete or uncertain information and vague queries. Information Sciences 34(1984), 115–143.Google Scholar
  14. 14.
    Raju K. V. S. V. N., Majumdar A. K.: Fuzzy functional dependencies and lossless join decomposition of fuzzy relational database systems. ACM Trans. Database Systems Vol. 13, No. 2, 1988, pp. 129–166.Google Scholar
  15. 15.
    Tyagi B. K., Sharfuddin A., Dutta R. N., Tayal D. K.: A complete axiomatization of fuzzy functional dependencies using fuzzy function. Fuzzy Sets and Systems 151(2)(2005), 363–379.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Radim Bělohlávek
    • 1
  • Vilém Vychodil
    • 1
  1. 1.Department of Computer SciencePalacky UniversityOlomoucCzech Republic

Personalised recommendations