Skip to main content

Assessing Significance of Connectivity and Conservation in Protein Interaction Networks

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 3909))

Abstract

Computational and comparative analysis of protein-protein interaction (PPI) networks enable understanding of the modular organization of the cell through identification of functional modules and protein complexes. These analysis techniques generally rely on topological features such as connectedness, based on the premise that functionally related proteins are likely to interact densely and that these interactions follow similar evolutionary trajectories. Significant recent work in our lab, and in other labs has focused on efficient algorithms for identification of modules and their conservation. Application of these methods to a variety of networks has yielded novel biological insights. In spite of algorithmic advances, development of a comprehensive infrastructure for interaction databases is in relative infancy compared to corresponding sequence analysis tools such as BLAST and CLUSTAL. One critical component of this infrastructure is a measure of the statistical significance of a match or a dense subcomponent. Corresponding sequence-based measures such as E-values are key components of sequence matching tools. In the absence of an analytical measure, conventional methods rely on computer simulations based on ad-hoc models for quantifying significance. This paper presents the first such effort, to the best of our knowledge, aimed at analytically quantifying statistical significance of dense components and matches in reference model graphs. We consider two reference graph models – a G(n,p) model in which each pair of nodes has an identical likelihood, p, of sharing an edge, and a two-level G(n,p) model, which accounts for high-degree hub nodes generally occurring in PPI networks. We argue that by choosing conservatively the value of p, the G(n,p) model will dominate that of the power-law graph that is often used to model PPI networks. We also propose a method for evaluating statistical significance based on the results derived from this analysis, and demonstrate the use of these measures for assessing significant structures in PPI networks. Experiments performed on a rich collection of PPI networks show that the proposed model provides a reliable means of evaluating statistical significance of dense patterns in these networks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiello, W., Chung, F., Lu, L.: A random graph model for power law graphs. In: Proc. ACM Symp. Theory of Computing, pp. 171–180 (2000)

    Google Scholar 

  2. Bader, G.D., Donalson, I., Wolting, C., Quellette, B.F., Pawson, T., Hogue, C.W.: BIND-the Biomolecular Interaction Network Database. Nuc. Acids Res. 29(1), 242–245 (2001)

    Article  Google Scholar 

  3. Bader, G.D., Hogue, C.W.V.: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4(2) (2003)

    Google Scholar 

  4. Barabási, A., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  5. Bollobás, B.: Random Graphs. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  6. Brun, C., Herrmann, C., Guénoche, A.: Clustering proteins from interaction networks for the prediction of cellular functions. BMC Bioinformatics 5(95) (2004)

    Google Scholar 

  7. Chung, F., Lu, L., Vu, V.: Spectra of random graphs with given expected degrees. PNAS 100(11), 6313–6318 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  8. del Sol, A., Fujihashi, H., O’Meara, P.: Topology of small-world networks of protein-protein complex structures. Bioinformatics 21(8), 1311–1315 (2005)

    Article  Google Scholar 

  9. Han, J.-D.J., Dupuy, D., Bertin, N., Cusick, M.E., Vidal, M.: Effect of sampling on topology predictions of protein interaction networks. Nat. Biotech. 23(7), 839–844 (2005)

    Article  Google Scholar 

  10. Hartuv, E., Shamir, R.: A clustering algorithm based on graph connectivity. Information Processing Letters 76, 171–181 (2000)

    Article  MathSciNet  Google Scholar 

  11. Hu, H., Yan, X., Huang, Y., Han, J., Zhou, X.J.: Mining coherent dense subgraphs across massive biological networks for functional discovery. Bioinformatics 21, i213–i221 (2005)

    Google Scholar 

  12. Itzkovitz, S., Milo, R., Kashtan, N., Ziv, G., Alon, U.: Subgraphs in random networks. Physical Review E 68(026127) (2003)

    Google Scholar 

  13. Jeong, H., Mason, S.P., Barabási, A., Oltvai, Z.N.: Lethality and centrality in protein networks. Nature 411, 41–42 (2001)

    Article  Google Scholar 

  14. Kelley, B.P., Sharan, R., Karp, R.M., Sittler, T., Root, D.E., Stockwell, B.R., Ideker, T.: Conserved pathways withing bacteria and yeast as revealed by global protein network alignment. PNAS 100(20), 11394–11399 (2003)

    Article  Google Scholar 

  15. Koyutürk, M., Grama, A., Szpankowski, W.: An efficient algorithm for detecting frequent subgraphs in biological networks. In: Bioinformatics (ISMB 2004), pp. i200–i207 (2004)

    Google Scholar 

  16. Koyutürk, M., Grama, A., Szpankowski, W.: Pairwise local alignment of protein interaction networks guided by models of evolution. In: Miyano, S., Mesirov, J., Kasif, S., Istrail, S., Pevzner, P.A., Waterman, M. (eds.) RECOMB 2005. LNCS (LNBI), vol. 3500, pp. 48–65. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Koyutürk, M., Kim, Y., Subramaniam, S., Szpankowski, W., Grama, A.: Detecting conserved interaction patterns in biological networks (submitted)

    Google Scholar 

  18. Künkele, K.-P., Juin, P., Pompa, C., Nargang, F.E., Henry, J.-P., Neuperr, W., Lill, R., Thieffry, M.: The isolated complex of the translocase of the outer membrane of mitochondria. J. Biol. Chem. 273(47), 31032–31039 (1998)

    Article  Google Scholar 

  19. Pereira-Leal, J.B., Enright, A.J., Ouzounis, C.A.: Detection of functional modules from protein interaction networks. Proteins 54(1), 49–57 (2004)

    Article  Google Scholar 

  20. Pržulj, N.: Graph theory analysis of protein-protein interactions. In: Jurisica, I., Wigle, D. (eds.) Knowledge Discovery in Proteomics. CRC Press, Boca Raton (2004)

    Google Scholar 

  21. Pržulj, N., Corneil, D.G., Jurisica, I.: Modeling interactome: scale-free or geometric?. Bioinformatics 20(18), 3508–3515 (2004)

    Article  Google Scholar 

  22. Pržulj, N., Wigle, D.A., Jurisica, I.: Functional topology in a network of protein interactions. Bioinformatics 20(3), 340–348 (2004)

    Article  Google Scholar 

  23. Rives, A.W., Galitski, T.: Modular organization of cellular networks. PNAS 100(3), 1128–1133 (2003)

    Article  Google Scholar 

  24. Scholtens, D., Vidal, M., Gentleman, R.: Local modeling of global interactome networks. Bioinformatics 21(17), 3548–3557 (2005)

    Article  Google Scholar 

  25. Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin, N., Schwikowski, B., Ideker, T.: Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13(11), 2498–2504 (2003)

    Article  Google Scholar 

  26. Sharan, R., Ideker, T., Kelley, B.P., Shamir, R., Karp, R.M.: Identification of protein complexes by comparative analysis of yeast and bacterial protein interaction data. In: RECOMB 2004, pp. 282–289 (2004)

    Google Scholar 

  27. Sharan, R., Suthram, S., Kelley, R.M., Kuhn, T., McCuine, S., Uetz, P., Sittler, T., Karp, R.M., Ideker, T.: Conserved patterns of protein interaction in multiple species. PNAS 102(6), 1974–1979 (2005)

    Article  Google Scholar 

  28. Spirin, V., Mirny, L.A.: Protein complexes and functional modules in molecular networks. PNAS 100(21), 12123–12128 (2003)

    Article  Google Scholar 

  29. Stoer, M., Wagner, F.: A simple min-cut algorithm. J. ACM 44(4), 585–591 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  30. Szpankowski, W.: Average Case Analysis of Algorithms on Sequences. John Wiley & Sons, New York (2001)

    MATH  Google Scholar 

  31. Tatusov, R., Fedorova, N., Jackson, J., Jacobs, A., Kiryutin, B., Koonin, E.: The cog database: An updated version includes eukaryotes. BMC Bioinformatics 4(41) (2003)

    Google Scholar 

  32. Thomas, A., Cannings, R., Monk, N.A., Cannings, C.: On the structure of protein-protein interaction networks. Biochem. Soc. Trans. 31(6), 1491–1496 (2003)

    Article  Google Scholar 

  33. Tornow, S., Mewes, H.W.: Functional modules by relating protein interaction networks and gene expression. Nuc. Acids Res. 31(21), 6283–6289 (2003)

    Article  Google Scholar 

  34. Wagner, A.: The yeast protein interaction network evolves rapidly and contains few redundant duplicate genes. Mol. Bio. Evol. 18(7), 1283–1292 (2001)

    Google Scholar 

  35. Wagner, A.: How the global structure of protein interaction networks evolves. Proc. R. Soc. Lond. Biol. Sci. 270(1514), 457–466 (2003)

    Article  Google Scholar 

  36. Waterman, M.: Introduction to Computational Biology. Chapman & Hall, London (1995)

    MATH  Google Scholar 

  37. Waterman, M.S., Vingrons, M.: Rapid and accurate estimates of statistical significance for sequence data base searches. PNAS 91, 4625–4628 (1994)

    Article  MATH  Google Scholar 

  38. Xenarios, I., Salwinski, L., Duan, X.J., Higney, P., Kim, S., Eisenberg, D.: DIP: The Database of Interacting Proteins. A research tool for studying cellular networks of protein interactions. Nuc. Acids Res. 30, 303–305 (2002)

    Article  Google Scholar 

  39. Yook, S.H., Oltvai, Z.N., Barabási, A.L.: Functional and topological characterization of protein interaction networks. Proteomics 4(4), 928–942 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Koyutürk, M., Grama, A., Szpankowski, W. (2006). Assessing Significance of Connectivity and Conservation in Protein Interaction Networks. In: Apostolico, A., Guerra, C., Istrail, S., Pevzner, P.A., Waterman, M. (eds) Research in Computational Molecular Biology. RECOMB 2006. Lecture Notes in Computer Science(), vol 3909. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11732990_4

Download citation

  • DOI: https://doi.org/10.1007/11732990_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-33295-4

  • Online ISBN: 978-3-540-33296-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics