Simulating Protein Motions with Rigidity Analysis

  • Shawna Thomas
  • Xinyu Tang
  • Lydia Tapia
  • Nancy M. Amato
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3909)

Abstract

Protein motions, ranging from molecular flexibility to large-scale conformational change, play an essential role in many biochemical processes. Despite the explosion in our knowledge of structural and functional data, our understanding of protein movement is still very limited. In previous work, we developed and validated a motion planning based method for mapping protein folding pathways from unstructured conformations to the native state. In this paper, we propose a novel method based on rigidity theory to sample conformation space more effectively, and we describe extensions of our framework to automate the process and to map transitions between specified conformations. Our results show that these additions both improve the accuracy of our maps and enable us to study a broader range of motions for larger proteins. For example, we show that rigidity-based sampling results in maps that capture subtle folding differences between protein G and its mutations, NuG1 and NuG2, and we illustrate how our technique can be used to study large-scale conformational changes in calmodulin, a 148 residue signaling protein known to undergo conformational changes when binding to Ca2 + . Finally, we announce our web-based protein folding server which includes a publically available archive of protein motions: http://parasol.tamu.edu/foldingserver/

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alm, E., Baker, D.: Prediction of protein-folding mechanisms from free-energy landscapes derived from native structures. Proc. Natl. Acad. Sci. USA 96(20), 11305–11310 (1999)CrossRefGoogle Scholar
  2. 2.
    Amato, N.M., Dill, K.A., Song, G.: Using motion planning to map protein folding landscapes and analyze folding kinetics of known native structures. J. Comput. Biol. 10(3-4), 239–256 (2003); Special issue of Int. Conf. Comput. Molecular Biology (RECOMB) (2002)Google Scholar
  3. 3.
    Amato, N.M., Song, G.: Using motion planning to study protein folding pathways. J. Comput. Biol. 9(2), 149–168 (2002); Special issue of Int. Conf. Comput. Molecular Biology (RECOMB) (2001)Google Scholar
  4. 4.
    Apaydin, M., Brutlag, D., Guestrin, C., Hsu, D., Latombe, J.-C.: Stochastic roadmap simulation: An efficient representation and algorithm for analyzing molecular motion. In: Proc. Int. Conf. Comput. Molecular Biology (RECOMB), pp. 12–21 (2002)Google Scholar
  5. 5.
    Apaydin, M., Singh, A., Brutlag, D., Latombe, J.-C.: Capturing molecular energy landscapes with probabilistic conformational roadmaps. In: Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pp. 932–939 (2001)Google Scholar
  6. 6.
    Baker, D.: A surprising simplicity to protein folding. Nature 405, 39–42 (2000)CrossRefGoogle Scholar
  7. 7.
    Bayazit, O.B., Song, G., Amato, N.M.: Ligand binding with OBPRM and haptic user input: Enhancing automatic motion planning with virtual touch. In: Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pp. 954–959 (2001); This work was also presented as a poster at RECOMB 2001Google Scholar
  8. 8.
    Berman, H., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T., Weissig, H., Shindyalov, I., Bourne, P.: The protein data bank. Nucleic Acids Research 28(1), 235–242 (2000)CrossRefGoogle Scholar
  9. 9.
    Boutonnet, N., Rooman, M., Wodak, S.: Automatic analysis of protein conformational changes by multiple linkage clustering. J. Mol. Biol. 253, 633–647 (1995)CrossRefGoogle Scholar
  10. 10.
    Bryngelson, J., Onuchic, J., Socci, N., Wolynes, P.: Funnels, pathways, and the energy landscape of protein folding: A synthesis. Protein Struct. Funct. Genet. 21, 167–195 (1995)CrossRefGoogle Scholar
  11. 11.
    Case, D.: Molecular dynamics and normal mode analysis of biomolecular rigidity. In: Thorpe, M., Duxbury, P. (eds.) Rigidity theory and applications, pp. 329–344. Kluwer Academic/Plenum Publishers (1999)Google Scholar
  12. 12.
    Cortes, J., Simeon, T., Remaud-Simeon, M., Tran, V.: Geometric algorithms for the conformational analysis of long protein loops. J. Computat. Chem. 25 (2004)Google Scholar
  13. 13.
    Covell, D.: Folding protein α-carbon chains into compact forms by Monte Carlo methods. Proteins: Struct. Funct. Genet. 14(4), 409–420 (1992)Google Scholar
  14. 14.
    Echols, N., Milburn, D., Gerstein, M.: Molmovdb: analysis and visualization of conformational change and structural flexibility. Nucleic Acids Res. 31, 478–482 (2003)CrossRefGoogle Scholar
  15. 15.
    Gerstein, M., Krebs, W.: A database of macromolecular motions. Nucleic Acids Res. 26, 4280–4290 (1998)CrossRefGoogle Scholar
  16. 16.
    Haile, J.: Molecular Dynamics Simulation: elementary methods. Wiley, New York (1992)Google Scholar
  17. 17.
    Hespenheide, B.M., Rader, A., Thorpe, M., Kuhn, L.A.: Identifying protein folding cores from the evolution of flexible regious during unfolding. J. Mol. Gra. Model. 21, 195–207 (2002)CrossRefGoogle Scholar
  18. 18.
    Jacobs, D.: Generic rigidity in three-dimensional bond-bending networks. J. Phys. A: Math. Gen. 31, 6653–6668 (1998)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Jacobs, D., Thorpe, M.: Generic rigidity percolation: The pebble game. Phys. Rev. Lett. 75(22), 4051–4054 (1995)CrossRefGoogle Scholar
  20. 20.
    Jacobs, D.J., Rader, A., Kuhn, L.A., Thorpe, M.: Protein flexiblility predictions using graph theory. Proteins Struct. Funct. Genet. 44, 150–165 (2001)CrossRefGoogle Scholar
  21. 21.
    Janin, J., Wodak, S.: Structural domains in proteins and their role in the dynamics of protein function. Prog. Biophys. Mol. Biol. 42, 21–78 (1983)CrossRefGoogle Scholar
  22. 22.
    Karplus, P., Schulz, G.: Prediction of chain flexibility in proteins. Naturwissencschaften 72, 212–213 (1985)CrossRefGoogle Scholar
  23. 23.
    Kavraki, L.E., Svestka, P., Latombe, J.C., Overmars, M.H.: Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Automat. 12(4), 566–580 (1996)CrossRefGoogle Scholar
  24. 24.
    Keskin, O., Jernigan, R., Bahar, I.: Proteins with similar architecture exhibit similar large-scale dynamic behavior. Biophys. J. 78, 2093–2106 (2000)CrossRefGoogle Scholar
  25. 25.
    Kim, D.E., Fisher, C., Baker, D.: A breakdown of symmetry in the folding transition state of protein l. J. Mol. Biol. 298, 971–984 (2000)CrossRefGoogle Scholar
  26. 26.
    Kolinski, A., Skolnick, J.: Monte Carlo simulations of protein folding. Proteins Struct. Funct. Genet. 18(3), 338–352 (1994)Google Scholar
  27. 27.
    Krivov, S.V., Karplus, M.: Free energy disconnectivity graphs: Application to peptide models. J. Chem. Phys 114(23), 10894–10903 (2002)CrossRefGoogle Scholar
  28. 28.
    Lei, M., Zavodszky, M.I., Kuhn, L.A., Thorpe, M.F.: Sampling protein conformations and pathways. J. Comput. Chem. 25, 1133–1148 (2004)CrossRefGoogle Scholar
  29. 29.
    Levitt, M.: Protein folding by restrained energy minimization and molecular dynamics. J. Mol. Biol. 170, 723–764 (1983)CrossRefGoogle Scholar
  30. 30.
    Levitt, M., Warshel, A.: Computer simulation of protein folding. Nature 253, 694–698 (1975)CrossRefGoogle Scholar
  31. 31.
    Li, R., Woodward, C.: The hydrogen exchange core and protein folding. Protein Sci. 8(8), 1571–1591 (1999)CrossRefGoogle Scholar
  32. 32.
    Ma, J., Karplus, M.: The allosteric mechanism of the chaperonin groel: a dynamic analysis. Proc. Natl. Acad. Sci. USA 95, 8502–8507 (1998)CrossRefGoogle Scholar
  33. 33.
    Maiorov, V., Abagyan, R.: A new method for modeling large-scale rearrangements of protein domains. Proteins 27, 410–424 (1997)CrossRefGoogle Scholar
  34. 34.
    McCallister, E.L., Alm, E., Baker, D.: Critical role of β-hairpin formation in protein g folding. Nat. Struct. Biol. 7(8), 669–673 (2000)CrossRefGoogle Scholar
  35. 35.
    Muñoz, V., Henry, E.R., Hoferichter, J., Eaton, W.A.: A statistical mechanical model for β-hairpin kinetics. Proc. Natl. Acad. Sci. USA 95, 5872–5879 (1998)CrossRefGoogle Scholar
  36. 36.
    Nauli, S., Kuhlman, B., Baker, D.: Computer-based redesign of a protein folding pathway. Nature Struct. Biol. 8(7), 602–605 (2001)CrossRefGoogle Scholar
  37. 37.
    Nichols, W., Rose, G., Eyck, L.T., Zimm, B.: Rigid domains in proteins: an algorithmic approach to their identification. Proteins 23, 38–48 (1995)CrossRefGoogle Scholar
  38. 38.
    Prusiner, S.: Prions. Proc. Natl. Acad. Sci. USA 95(23), 13363–13383 (1998)CrossRefGoogle Scholar
  39. 39.
    Rader, A., Hespenheide, B.M., Kuhn, L.A., Thorpe, M.: Protein unfolding: Rigidity lost. Proc. Natl. Acad. Sci. USA 99(6), 3540–3545 (2002)CrossRefGoogle Scholar
  40. 40.
    Singh, A., Latombe, J., Brutlag, D.: A motion planning approach to flexible ligand binding. In: 7th Int. Conf. on Intelligent Systems for Molecular Biology (ISMB), pp. 252–261 (1999)Google Scholar
  41. 41.
    Song, G.: A Motion Planning Approach to Protein Folding. Ph.D. dissertation. Dept. of Computer Science, Texas A&M University (December 2004)Google Scholar
  42. 42.
    Song, G., Thomas, S., Dill, K., Scholtz, J., Amato, N.: A path planning-based study of protein folding with a case study of hairpin formation in protein G and L. In: Proc. Pacific Symposium of Biocomputing (PSB), pp. 240–251 (2003)Google Scholar
  43. 43.
    Sternberg, M.J.: Protein Structure Prediction. OIRL Press at Oxford University Press (1996)Google Scholar
  44. 44.
    Sun, S., Thomas, P.D., Dill, K.A.: A simple protein folding algorithm using a binary code and secondary structure constraints. Protein Eng. 8(8), 769–778 (1995)CrossRefGoogle Scholar
  45. 45.
    Tang, X., Kirkpatrick, B., Thomas, S., Song, G., Amato, N.M.: Using motion planning to study rna folding kinetics. In: Proc. Int. Conf. Comput. Molecular Biology (RECOMB), pp. 252–261 (2004)Google Scholar
  46. 46.
    Whiteley, W.: Some matroids from discrete applied geometry. Contemp. Math. 197, 171–311 (1996)MathSciNetGoogle Scholar
  47. 47.
    Xie, D., Thomas, S., Lien, J.-M., Amato, N.M.: Incremental map generation. Technical Report TR05-006, Parasol Lab. Dept. of Computer Science, Texas A&M University (September 2005)Google Scholar
  48. 48.
    Zuckerman, D.M.: Simulation of and ensemble of conformational transitions in a united-residue model of calmodulin. J. Phys. Chem 108, 5127–5137 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Shawna Thomas
    • 1
  • Xinyu Tang
    • 1
  • Lydia Tapia
    • 1
  • Nancy M. Amato
    • 1
  1. 1.Parasol Lab, Dept. of Comp. Sci.Texas A&M UniversityCollege StationUSA

Personalised recommendations