Phylogenetic Profiling of Insertions and Deletions in Vertebrate Genomes

  • Sagi Snir
  • Lior Pachter
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3909)

Abstract

Micro-indels are small insertion or deletion events (indels) that occur during genome evolution. The study of micro-indels is important, both in order to better understand the underlying biological mechanisms, and also for improving the evolutionary models used in sequence alignment and phylogenetic analysis. The inference of micro-indels from multiple sequence alignments of related genomes poses a difficult computational problem, and is far more complicated than the related task of inferring the history of point mutations. We introduce a tree alignment based approach that is suitable for working with multiple genomes and that emphasizes the concept of indel history. By working with an appropriately restricted alignment model, we are able to propose an algorithm for inferring the optimal indel history of homologous sequences that is efficient for practical problems. Using data from the ENCODE project as well as related sequences from multiple primates, we are able to compare and contrast indel events in both coding and non-coding regions. The ability to work with multiple sequences allows us to refute a previous claim that indel rates are approximately fixed even when the mutation rate changes, and allows us to show that indel events are not neutral. In particular, we identify indel hotspots in the human genome.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blanchette, M., Green, E.D., Miller, W., Haussler, D.: Reconstructing large regions of an ancestral mammalian genome in silico. Genome Res. 14, 2412–2423 (2004)CrossRefGoogle Scholar
  2. 2.
    Boffelli, D., McAuliffe, J., Ovcharenko, D., Lewis, K.D., Ovcharenko, I., Pachter, L., Rubin, E.M.: Phylogenetic shadowing of primate sequences to find functional regions of the human genome. Science 299(5611), 1391–1394 (2003)CrossRefGoogle Scholar
  3. 3.
    Bray, N., Pachter, L.: MAVID: Constrained ancestral alignment of multiple sequences. Genome Res. 14, 693–699 (2004)CrossRefGoogle Scholar
  4. 4.
    Cooper, G.M., Brudno, M., Stone, E.A., Dubchak, I., Batzoglou, S., Sidow, A.: Characterization of evolutionary rates and constraints in three mammalian genomes. Genome Res. 14, 539–548 (2004)CrossRefGoogle Scholar
  5. 5.
    Chuzhanova, N.A., Anassis, E.J., Ball, E.V., Krawczak, M., Cooper, D.N.: Meta-analysis of indels causing human genetic disease: mechanisms of mutagenesis and the role of local DNA sequence complexity. Human Mutation 21(1), 28–44 (2003)CrossRefGoogle Scholar
  6. 6.
    Dress, A., Steel, M.A.: Convex tree realizations of partitions. Applied Mathematics Letters 5(3), 3–6 (1992)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    The ENCODE Project Consortium. The ENCODE (ENCyclopedia of DNA Elements) Project. Science 306(5696), 636–640 (2004)Google Scholar
  8. 8.
    The Berkeley ENCODE Website, http://bio.math.berkeley.edu/encode/
  9. 9.
    Elias, I.: Settling the Intractability of Multiple Alignment. In: Int. Symp. on Algorithms and Computation (ISAAC), pp. 352–363 (2003)Google Scholar
  10. 10.
    Fitch, W.M.: A non-sequential method for constructing trees and hierarchical classifications. J. Mol. Evol. 18(1), 30–37 (1981)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Felsenstein, J.: Inferring Phylogenies. Sinauer Associates Inc, Mass (2004)Google Scholar
  12. 12.
    Frazer, K.A., Chen, X., Hinds, D.A., Pant, P.V., Patil, N., Cox, D.R.: Genomic DNA insertions and deletions occur frequently between humans and nonhuman primates. Genome Res. 13(3), 341–346 (2003)CrossRefGoogle Scholar
  13. 13.
    Hancock, J.M., Vogler, A.P.: How slippage-derived sequences are incorporated into rRNA variable-region secondary structure: Implications for phylogeny reconstruction. Mol. Phylogenet. Evol. 14, 366–374 (2000)CrossRefGoogle Scholar
  14. 14.
    Hasegawa, M., Kishino, H., Yano, T.: Dating the human-ape splitting by a molecular clock of mitochondrial DNA. J. Mol. Evol. 22, 160–174 (1985)CrossRefGoogle Scholar
  15. 15.
    Lai, Y., Sun, F.: The relationship between microsatellite slippage mutation rate and the number of repeat units. Mol. Biol. Evol. 20, 2123–2131 (2003)CrossRefGoogle Scholar
  16. 16.
    Löytynoja, A., Goldman, N.: An algorithm for progressive multiple alignment of sequences with insertions. Proc. Natl. Acad. Sci. 102, 10557–10562 (2005)CrossRefGoogle Scholar
  17. 17.
    McGuire, G., Denham, M.C., Balding, D.J.: Models of sequence evolution for DNA sequences containing gaps. Mol. Biol. Evol. 18, 481–490 (2001)Google Scholar
  18. 18.
    Mitchison, G.J.: A probabilistic treatment of phylogeny and sequence alignment. J. Mol. Evol. 49, 11–22 (1999)CrossRefGoogle Scholar
  19. 19.
    Mitchison, G.J., Durbin, R.M.: Tree-based maximal likelihood substitution matrices and hidden Markov models. J. Mol. Evol. 41, 1139–1151 (1995)CrossRefGoogle Scholar
  20. 20.
    Petrov, D.A., Sangster, T.A., Johnston, J.S., Hartl, D.L., Shaw, K.L.: Evidence for DNA loss as a determinant of genome size. Science 287, 1060–1062 (2000)CrossRefGoogle Scholar
  21. 21.
    Berkeley PGA, http://pga.lbl.gov/
  22. 22.
    Saitou, N., Ueda, S.: Evolutionary rates of insertion and deletion in noncoding nucleotide sequences of primates. Mol. Biol. Evol. 11(3), 504–512 (1994)Google Scholar
  23. 23.
    Sankoff, D., Cedergren, R.: Simultaneous comparisons of three or more sequences related by a tree. In: Sankoff, D., Kruskal, J. (eds.) Time Warp, String Edits, and Macromolecules: the Theory and Practice of Sequence Comparison, pp. 253–264. Addison Wesley, Reading (1983)Google Scholar
  24. 24.
    Soding, J., Lupas, A.N.: More than the sum of their parts: on the evolution of proteins from peptides. Bioessays 25(9), 837–846 (2003)CrossRefGoogle Scholar
  25. 25.
    Taylor, M.S., Ponting, C.P., Copley, R.R.: Occurrence and consequences of coding sequence insertions and deletions in mammalian genomes. Genome Res. 14, 555–566 (2004)CrossRefGoogle Scholar
  26. 26.
    Thomas, J.W., Touchman, J.W., Blakesley, R.W., Bouffard, G.G., Beckstrom-Sternberg, S.M., Margulies, E.H., Blanchette, M., Siepel, A.C., Thomas, P.J., McDowell, J.C., et al.: Comparative analyses of multi-species sequences from targeted genomic regions. Nature 424, 788–793 (2003)CrossRefGoogle Scholar
  27. 27.
    Thorne, J.L., Kishino, H., Felsenstein, J.: An evolutionary model for maximum likelihood alignment of DNA sequences. J. Mol. Evol. 33, 114–124 (1991)CrossRefGoogle Scholar
  28. 28.
    Wang, L., Jiang, T.: On the complexity of multiple sequence alignment. Journal of Computational Biology 1(4), 337–348 (1994)CrossRefGoogle Scholar
  29. 29.
    Wang, L., Jiang, T., Lawler, E.L.: Approximation algorithms for tree alignment with a given phylogeny. Algorithmica 16(3), 302–315 (1996)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Wang, L., Gusfield, D.: Improved approximation algorithms for tree alignment. J. Algorithms 25(2), 255–273 (1997)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Wu, C., Li, W.H.: Evidence for higher rates of nucleotide substitution in rodents than in man. Proc. Natl. Acad. Sci. 82, 1741–1745 (1985)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Sagi Snir
    • 1
  • Lior Pachter
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaBerkeley

Personalised recommendations