Robot Paintings Evolved Using Simulated Robots

  • Gary Greenfield
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3907)

Abstract

We describe our efforts to evolve robot paintings using simulated robots. Our evolutionary framework considers only the initial positions and initial directions of the simulated robots. Our fitness functions depend on the global properties of the resulting robot paintings and on the behavior of the simulated robots that occurs while making the paintings. Our evolutionary framework therefore implements an optimization algorithm that can be used to try and help identify robot paintings with desirable aesthetic properties. The goal of this work is to better understand how art making by a collection of autonomous cooperating robots might occur in such a way that the robots themselves are able to participate in the evaluation of their creative efforts.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    McCormack, J.: Open problems in evolutionary music and art. In: Rothlauf, F., Branke, J., Cagnoni, S., Corne, D.W., Drechsler, R., Jin, Y., Machado, P., Marchiori, E., Romero, J., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2005. LNCS, vol. 3449, pp. 428–436. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Moura, L., Ramos, V.: Swarm paintings — nonhuman art. In: Maubant, J., et al. (eds.) Architopia: Book, Art, Architecture, and Science, Institut d’Art Contemporain, Lyon/Villeurbanne, France, pp. 5–24 (2002)Google Scholar
  3. 3.
    Moura, L., Pereira, H.:: Man + Robots: Symbiotic Art. In: Institut d’Art Contemporain, Lyon/Villeurbanne, France (2004)Google Scholar
  4. 4.
    Ramos, V.: Self-organizing the abstract: canvas as a swarm habitat for collective memory, perception and cooperative distributed creativity. In: Rekalde, J., et al. (eds.) First Art & Science Symposium, Models to Know Reality, Bilbao, Spain, vol. 59 (2003)Google Scholar
  5. 5.
    Theraulaz, G., Bonabeau, E.: A brief history of stigmergy. Artifical Life 5(2), 97–116 (1999)Google Scholar
  6. 6.
    Saunders, R., Gero, J.: Artificial creativity: a synthetic approach to the subject of creative behavior. In: Gero, J. (ed.) Proceedings of the Fifth Conference on Computational and Cognitive Models of Creative Design, Key Centre of Design Computing and Cognition, Sydney, Australia, pp. 113–139 (2001)Google Scholar
  7. 7.
    Ramos, V., Almeida, F.: Artificial ant colonies in digital image habitats - a mass behaviour effect study on pattern recognition. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 113–116. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  8. 8.
    Ramos, V.: On the implicit and on the artificial - morphogenesis and emergent aesthetics in autonomous collective systems. In: Maubant, J., et al. (eds.) Architopia: Book, Art, Architecture, and Science, Institut d’Art Contemporain, Lyon/Villeurbanne, France, pp. 25–27 (2002)Google Scholar
  9. 9.
    Ramos, V., Merelo, J.: Self-organized stigmergic document maps: environment as a mechanism for context learning. In: Alba, E., et al. (eds.) AEB 2002, First Spanish Conference on Evolutionary and Bio-Inspired Algorithms, Mérida, Spain, pp. 284–293 (2002)Google Scholar
  10. 10.
    Sims, K.: Artificial evolution for computer graphics. Computer Graphics 25, 319–328 (1991)CrossRefGoogle Scholar
  11. 11.
    Aupetit, S., Bordeau, V., Slimane, M., Venturini, G., Monmarche, N.: Interactive evolution of ant paintings. In: McKay, B., et al. (eds.) 2003 Congress on Evolutionary Computation Proceedings, pp. 1376–1383. IEEE Press, Los Alamitos (2003)CrossRefGoogle Scholar
  12. 12.
    Greenfield, G.: Evolutionary methods for ant colony paintings. In: Rothlauf, F., Branke, J., Cagnoni, S., Corne, D.W., Drechsler, R., Jin, Y., Machado, P., Marchiori, E., Romero, J., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2005. LNCS, vol. 3449, pp. 478–487. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  13. 13.
    Baluja, S., Pomerleau, D., Jochem, T.: Towards automated artificial evolution for computer-generated images. Connection Science 6, 325–354 (1994)CrossRefGoogle Scholar
  14. 14.
    Greenfield, G.: On the co-evolution of evolving expressions. International Journal of Computational Intelligence and Applications 2(1), 17–31 (2002)Google Scholar
  15. 15.
    Machado, P., Cardoso, A.: Computing aesthetics. In: de Oliveira, F.M. (ed.) SBIA 1998. LNCS (LNAI), vol. 1515, pp. 219–228. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  16. 16.
    Bentley, K.: Exploring aesthetic pattern formation. In: Soddu, C. (ed.) Proceedings of the Fifth International Conference of Generative Art (GA 2002), Milan, Italy (2002); See http://www.generativeart.com/papersGA2002/20.pdf
  17. 17.
    Boden, M.: Agents and creativity. Communications of the ACM 37(7), 117–121 (1994)Google Scholar
  18. 18.
    Boden, M.: The Philosophy of Artificial Life. Oxford University Press, New York (1996)Google Scholar
  19. 19.
    Dorin, A.: Aesthetic fitness and artificial evolution for the selection of imagery from the mythical infinite library. In: Kelemen, J., Sosík, P. (eds.) ECAL 2001. LNCS (LNAI), vol. 2159, pp. 659–668. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Ramachandran, V., Hirstein, W.: The science of art: a neurological theory of aesthetic experience. Journal of Consciousness Studies 6, 15–52 (1999)Google Scholar
  21. 21.
    Whitelaw, M.: Metacreation: Art and Artificial Life. MIT Press, Cambridge (2004)Google Scholar
  22. 22.
    Harlan, R., Levine, D., McClarigan, S.: The Khepera robot and kRobot class: a platform for introducing robotics in the undergraduate curriculum. Technical Report 4, Bonaventure Undergraduate Robotics Laboratory, St. Bonaventure University, New York (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Gary Greenfield
    • 1
  1. 1.Mathematics & Computer ScienceUniversity of RichmondRichmondUSA

Personalised recommendations