Optimal Broadcasting in Metropolitan MANETs Using Multiobjective Scatter Search

  • F. Luna
  • A. J. Nebro
  • B. Dorronsoro
  • E. Alba
  • P. Bouvry
  • L. Hogie
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3907)


Mobile Ad-hoc Networks (MANETs) are composed of a set of communicating devices which are able to spontaneously interconnect without any pre-existing infrastructure. In such scenario, broadcasting becomes an operation of capital importance for the own existence and operation of the network. Optimizing a broadcasting strategy in MANETs is a multiobjective problem accounting for three goals: reaching as many stations as possible, minimizing the network utilization, and reducing the makespan. In this paper, we face this multiobjective problem with a state-of-the-art multiobjective scatter search algorithm called AbSS (Archive-based Scatter Search) that computes a Pareto front of solutions to empower a human designer with the ability of choosing the preferred configuration for the network. Results are compared against those obtained with the previous proposal used for solving the problem, a cellular multiobjective genetic algorithm (cMOGA). We conclude that AbSS outperforms cMOGA with respect to three different metrics.


Pareto Front Multiobjective Optimization Scatter Search High Quality Solution Nondominated Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hogie, L., Guinand, F., Bouvry, P.: A Heuristic for Efficient Broadcasting in the Metropolitan Ad Hoc Network. In: 8th Int. Conf. on Knowledge-Based Intelligent Information and Engineering Systems, pp. 727–733 (2004)Google Scholar
  2. 2.
    Alba, E., Dorronsoro, B., Luna, F., Nebro, A., Bouvry, P.: A Cellular Multi- Objective Genetic Algorithm for Optimal Broadcasting Strategy in Metropolitan MANETs. In: IPDPS-NIDISC 2005, p. 192 (2005)Google Scholar
  3. 3.
    Nebro, A.J., Luna, F., Dorronsoro, B., Alba, E., Beham, A.: AbSS: An Archivebased Scatter Search Algorithm for Multiobjective Optimization. European Journal of Operational Research (2005) (submitted)Google Scholar
  4. 4.
    Glover, F.: A template for scatter search and path relinking. In: Hao, J.-K., Lutton, E., Ronald, E., Schoenauer, M., Snyers, D. (eds.) AE 1997. LNCS, vol. 1363, pp. 3–54. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  5. 5.
    Glover, F., Laguna, M., Martí, R.: Fundamentals of Scatter Search and Path Relinking. Control and Cybernetics 29, 653–684 (2000)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Glover, F., Laguna, M., Martí, R.: Scatter Search. In: Advances in Evolutionary Computing: Theory and Applications, pp. 519–539. Springer, Heidelberg (2003)Google Scholar
  7. 7.
    Beausoleil, R.P.: MOSS: Multiobjective Scatter Search Applied to Nonlinear Multiple Criteria Optimization. Eu. J. of Operational Research 169, 426–449 (2005)CrossRefMathSciNetGoogle Scholar
  8. 8.
    da Silva, C.G., Clímaco, J., Figueira, J.: A Scatter Search Method for the Bi- Criteria Multi-Dimensional {0,1}-Knapsack Problem using Surrogate Relaxation. Journal of Mathematical Modelling and Algorithms 3, 183–208 (2004)zbMATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Nebro, A.J., Luna, F., Alba, E.: New ideas in applying scatter search to multiobjective optimization. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 443–458. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  10. 10.
    Williams, B., Camp, T.: Comparison of Broadcasting Techniques for Mobile Ad Hoc Networks. In: Proc. of the ACM International Symposium on Mobile Ad Hoc Networking and Computing (MOBIHOC), pp. 194–205 (2002)Google Scholar
  11. 11.
    Knowles, J., Corne, D.: The Pareto Archived Evolution Strategy: A New Baseline Algorithm for Multiobjective Optimization. In: Proceedings of the 1999 Congress on Evolutionary Computation, CEC, pp. 9–105 (1999)Google Scholar
  12. 12.
    Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A Fast and Elitist Multiobjective Genetic Algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation 6, 182–197 (2002)CrossRefGoogle Scholar
  13. 13.
    Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto Evolutionary Algorithm. Technical report, Swiss Federal Inst. of Technology (2001)Google Scholar
  14. 14.
    Deb, K., Agrawal, B.: Simulated Binary Crossover for Continuous Search Space. Complex Systems 9, 115–148 (1995)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. PhD thesis, Swiss Federal Institute of Technology, ETH (1999)Google Scholar
  16. 16.
    Zitzler, E., Thiele, L.: Multiobjective Optimization Using Evolutionary Algorithms – A Comparative Study. In: PPSN V, pp. 292–301 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • F. Luna
    • 1
  • A. J. Nebro
    • 1
  • B. Dorronsoro
    • 1
  • E. Alba
    • 1
  • P. Bouvry
    • 2
  • L. Hogie
    • 2
  1. 1.Department of Computer ScienceUniversity of MálagaSpain
  2. 2.Faculty of Sciences, Technology and CommunicationsUniversity of Luxembourg 

Personalised recommendations