Behavioural Approximations for Restricted Linear Differential Hybrid Automata

  • Manindra Agrawal
  • Frank Stephan
  • P. S. Thiagarajan
  • Shaofa Yang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3927)

Abstract

We show the regularity of the discrete time behaviour of hybrid automata in which the rates of continuous variables are governed by linear differential operators in a diagonal form and in which the values of the continuous variables can be observed only with finite precision. We do not demand resetting of the values of the continuous variables during mode changes. We can cope with polynomial guards and we can tolerate bounded delays both in sampling the values of the continuous variables and in effecting changes in their rates required by mode switchings. We also show that if the rates are governed by diagonalizable linear differential operators with rational eigenvalues and there is no delay in effecting rate changes, the discrete time behaviour of the hybrid automaton is recursive. However, the control state reachability problem in this setting is undecidable.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, M., Stephan, F., Thiagarajan, P.S., Yang, S.: Behavioural approximations for restricted linear differential hybrid automata. Technical Report TR42/05, School of Computing, National University of Singapore, Singapore (2005)Google Scholar
  2. 2.
    Agrawal, M., Thiagarajan, P.S.: Lazy rectangular hybrid automata. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 1–15. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  3. 3.
    Agrawal, M., Thiagarajan, P.S.: The discrete time behaviour of lazy linear hybrid automata. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 55–69. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Alur, R., Henzinger, T.A., Lafferriere, G., Pappas, G.J.: Discrete abstractions of hybrid systems. Proc. of the IEEE 88, 971–984 (2000)CrossRefGoogle Scholar
  5. 5.
    Baker, A.: Transcendental Number Theory. Cambridge University Press, Cambridge (1979)MATHGoogle Scholar
  6. 6.
    Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded Model Checking. Advances in Computers 58. Academic Press, London (2003)Google Scholar
  7. 7.
    Gupta, V., Henzinger, T.A., Jagadeesan, R.: Robust timed automata. In: Maler, O. (ed.) HART 1997. LNCS, vol. 1201, pp. 331–345. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  8. 8.
    Henzinger, T.A.: The theory of hybrid automata. In: 11th LICS, pp. 278–292. IEEE Press, Los Alamitos (1996)Google Scholar
  9. 9.
    Henzinger, T.A., Kopke, P.W.: State equivalences for rectangular hybrid automata. In: Sassone, V., Montanari, U. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 530–545. Springer, Heidelberg (1996)Google Scholar
  10. 10.
    Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata? J. of Comp. and Sys. Sci. 57, 94–124 (1998)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Hirsch, M., Smale, S.: Differential Equations, Dynamical Systems and Linear Algebra. Academic Press, London (1974)MATHGoogle Scholar
  12. 12.
    Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages and Computation. Addison-Wesley, Reading (1979)MATHGoogle Scholar
  13. 13.
    Kesten, Y., Pnueli, A., Sifakis, J., Yovine, S.: Integration graphs: A class of decidable hybrid systems. In: Grossman, R.L., Ravn, A.P., Rischel, H., Nerode, A. (eds.) HS 1991 and HS 1992. LNCS, vol. 736, pp. 179–208. Springer, Heidelberg (1993)Google Scholar
  14. 14.
    Lafferriere, G., Pappas, G.J., Sastr, S.: O-minimal hybrid systems. Math. Control Signals Systems 13, 1–21 (2000)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Lafferriere, G., Pappas, G.J., Yovine, S.: Symbolic reachability computation for families of linear vector fields. J. Symbolic Computation 32, 231–253 (2001)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Tarski, A.: A Decision Method for Elementary Algebra and Geometry. University of California Press (1951)Google Scholar
  17. 17.
    Wilkie, A.: Schanuel’s conjecture and the decidability of the real exponential field. In: Algebraic Model Theory, pp. 223–230. Kluwer, Dordrecht (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Manindra Agrawal
    • 1
  • Frank Stephan
    • 2
  • P. S. Thiagarajan
    • 3
  • Shaofa Yang
    • 3
  1. 1.Department of Computer Science and EngineeringIndian Institute of TechnologyKanpurIndia
  2. 2.School of Computing and Department of MathematicsNational University of Singapore (NUS)Singapore
  3. 3.School of ComputingNational University of SingaporeSingapore

Personalised recommendations