Advertisement

The Core Concept for the Multidimensional Knapsack Problem

  • Jakob Puchinger
  • Günther R. Raidl
  • Ulrich Pferschy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3906)

Abstract

We present the newly developed core concept for the Multidimensional Knapsack Problem (MKP) which is an extension of the classical concept for the one-dimensional case. The core for the multidimensional problem is defined in dependence of a chosen efficiency function of the items, since no single obvious efficiency measure is available for MKP. An empirical study on the cores of widely-used benchmark instances is presented, as well as experiments with different approximate core sizes. Furthermore we describe a memetic algorithm and a relaxation guided variable neighborhood search for the MKP, which are applied to the original and to the core problems. The experimental results show that given a fixed run-time, the different metaheuristics as well as a general purpose integer linear programming solver yield better solution when applied to approximate core problems of fixed size.

Keywords

Knapsack Problem Memetic Algorithm Core Concept Variable Neighborhood Core Size 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Balas, E., Zemel, E.: An algorithm for large zero-one knapsack problems. Operations Research 28, 1130–1154 (1980)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Bertsimas, D., Tsitsiklis, J.N.: Introduction to Linear Optimization. Athena Scientific (1997)Google Scholar
  3. 3.
    Chu, P.C., Beasley, J.: A genetic algorithm for the multiconstrained knapsack problem. Journal of Heuristics 4, 63–86 (1998)CrossRefMATHGoogle Scholar
  4. 4.
    Fréville, A., Plateau, G.: An efficient preprocessing procedure for the multidimensional 0–1 knapsack problem. Discrete Applied Mathematics 49, 189–212 (1994)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Glover, F., Kochenberger, G.: Critical event tabu search for multidimensional knapsack problems. In: Osman, I., Kelly, J. (eds.) Metaheuristics: Theory and Applications, pp. 407–427. Kluwer Academic Publishers, Dordrecht (1996)Google Scholar
  6. 6.
    Gottlieb, J.: On the effectivity of evolutionary algorithms for multidimensional knapsack problems. In: Fonlupt, C., Hao, J.-K., Lutton, E., Schoenauer, M., Ronald, E. (eds.) AE 1999. LNCS, vol. 1829, pp. 22–37. Springer, Heidelberg (2000)Google Scholar
  7. 7.
    Hansen, P., Mladenović, N.: An introduction to variable neighborhood search. In: Voss, S., Martello, S., Osman, I., Roucairol, C. (eds.) Metaheuristics, Advances and Trends in Local Search Paradigms for Optimization, pp. 433–458. Kluwer, Dordrecht (1999)CrossRefGoogle Scholar
  8. 8.
    Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Heidelberg (2004)CrossRefMATHGoogle Scholar
  9. 9.
    Martello, S., Toth, P.: A new algorithm for the 0-1 knapsack problem. Management Science 34, 633–644 (1988)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Pirkul, H.: A heuristic solution procedure for the multiconstraint zero-one knapsack problem. Naval Research Logistics 34, 161–172 (1987)CrossRefMATHGoogle Scholar
  11. 11.
    Pisinger, D.: An expanding-core algorithm for the exact 0–1 knapsack problem. European Journal of Operational Research 87, 175–187 (1995)CrossRefMATHGoogle Scholar
  12. 12.
    Pisinger, D.: A minimal algorithm for the 0–1 knapsack problem. Operations Research 45, 758–767 (1997)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Pisinger, D.: Core problems in knapsack algorithms. Operations Research 47, 570–575 (1999)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    Puchinger, J., Raidl, G.R.: Relaxation guided variable neighborhood search. In: Hansen, P., Mladenović, N., Pérez, J.A.M., Batista, B.M., Moreno-Vega, J.M. (eds.) Proceedings of the 18th Mini Euro Conference on Variable Neighborhood Search, Tenerife, Spain (2005)Google Scholar
  15. 15.
    Raidl, G.R.: An improved genetic algorithm for the multiconstrained 0–1 knapsack problem. In: Fogel, D., et al. (eds.) Proceedings of the 5th IEEE International Conference on Evolutionary Computation, pp. 207–211. IEEE Press, Los Alamitos (1998)Google Scholar
  16. 16.
    Raidl, G.R., Gottlieb, J.: Empirical analysis of locality, heritability and heuristic bias in evolutionary algorithms: A case study for the multidimensional knapsack problem. Evolutionary Computation Journal 13(4) (to appear, 2005)Google Scholar
  17. 17.
    Senju, S., Toyoda, Y.: An approach to linear programming with 0–1 variables. Management Science 15, 196–207 (1968)CrossRefGoogle Scholar
  18. 18.
    Vasquez, M., Hao, J.-K.: A hybrid approach for the 0–1 multidimensional knapsack problem. In: Proceedings of the Int. Joint Conference on Artificial Intelligence 2001, pp. 328–333 (2001)Google Scholar
  19. 19.
    Vasquez, M., Vimont, Y.: Improved results on the 0-1 multidimensional knapsack problem. European Journal of Operational Research 165, 70–81 (2005)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jakob Puchinger
    • 1
  • Günther R. Raidl
    • 1
  • Ulrich Pferschy
    • 2
  1. 1.Institute of Computer Graphics and AlgorithmsVienna University of TechnologyViennaAustria
  2. 2.Institute of Statistics and Operations ResearchUniversity of GrazAustria

Personalised recommendations