Advertisement

Improving Graph Colouring Algorithms and Heuristics Using a Novel Representation

  • István Juhos
  • Jano I. van Hemert
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3906)

Abstract

We introduce a novel representation for the graph colouring problem, called the Integer Merge Model, which aims to reduce the time complexity of an algorithm. Moreover, our model provides useful information for guiding heuristics as well as a compact description for algorithms. To verify the potential of the model, we use it in dsatur, in an evolutionary algorithm, and in the same evolutionary algorithm extended with heuristics. An empiricial investigation is performed to show an increase in efficiency on two problem suites , a set of practical problem instances and a set of hard problem instances from the phase transition.

Keywords

graph colouring representation heuristics merge model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    de Werra, D.: An introduction to timetabling. European Journal of Operations Research 19, 151–162 (1985)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Briggs, P.: Register allocation via graph coloring. Technical Report TR92-183 (1998)Google Scholar
  3. 3.
    Garey, M., Johnson, D., So, H.: An application of graph colouring to printed circuit testing. IEEE Transaction on Circuits and Systems CAS-23, 591–599 (1976)CrossRefMATHGoogle Scholar
  4. 4.
    Garey, M., Johnson, D.: Computers and Instractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, San Francisco (1979)MATHGoogle Scholar
  5. 5.
    Craenen, B., Eiben, A., van Hemert, J.: Comparing evolutionary algorithms on binary constraint satisfaction problems. IEEE Transactions on Evolutionary Computation 7, 424–444 (2003)CrossRefGoogle Scholar
  6. 6.
    Juhos, I., Tóth, A., van Hemert, J.: Binary merge model representation of the graph colouring problem. In: Gottlieb, J., Raidl, G.R. (eds.) EvoCOP 2004. LNCS, vol. 3004, pp. 124–134. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Juhos, I., Tóth, A., van Hemert, J.: Heuristic colour assignment strategies for merge models in graph colouring. In: Raidl, G.R., Gottlieb, J. (eds.) EvoCOP 2005. LNCS, vol. 3448, pp. 132–143. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  8. 8.
    Brélaz, D.: New methods to color the vertices of a graph. Communications of the ACM 22, 251–256 (1979)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    CNET: Xbox specs revealed (2005) (accessed November 10, 2005), http://cnet.com/xbox+specs+revealed/2100-1043_3-5705372.html
  10. 10.
    Golomb, S., Baumert, L.: Backtrack programming. ACM 12, 516–524 (1965)MathSciNetMATHGoogle Scholar
  11. 11.
    Bäck, T., Fogel, D., Michalewicz, Z. (eds.): Handbook of Evolutionary Computation. Institute of Physics Publishing Ltd., Oxford University Press (1997)Google Scholar
  12. 12.
    Johnson, D., Trick, M.: Cliques, Coloring, and Satisfiability. American Mathematical Society, DIMACS (1996)Google Scholar
  13. 13.
    Culberson, J.: Iterated greedy graph coloring and the difficulty landscape. Technical Report TR 92-07, University of Alberta, Dept. of Computing Science (1992)Google Scholar
  14. 14.
    Cheeseman, P., Kenefsky, B., Taylor, W.: Where the really hard problems are. In: Proceedings of the IJCAI 1991, pp. 331–337 (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • István Juhos
    • 1
  • Jano I. van Hemert
    • 2
  1. 1.Department of Computer Algorithms and Artificial IntelligenceUniversity of Szeged, HungaryHungary
  2. 2.Institute of Computer Graphics and AlgorithmsVienna University of TechnologyViennaAustria

Personalised recommendations