On the Locality of Grammatical Evolution

  • Franz Rothlauf
  • Marie Oetzel
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3905)


This paper investigates the locality of the genotype-phenotype mapping (representation) used in grammatical evolution (GE). The results show that the representation used in GE has problems with locality as many neighboring genotypes do not correspond to neighboring phenotypes. Experiments with a simple local search strategy reveal that the GE representation leads to lower performance for mutation-based search approaches in comparison to standard GP representations. The results suggest that locality issues should be considered for further development of the representation used in GE.


Genetic Programming Search Step Symbolic Regression Grammatical Evolution Linear Genetic Programming 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    O’Neill, M., Ryan, C.: Grammatical evolution. IEEE Transactions on Evolutionary Computation 5, 349–358 (2001)CrossRefGoogle Scholar
  2. 2.
    Koza, J.R.: Genetic programming: On the programming of computers by natural selection. MIT Press, Cambridge, Mass (1992)zbMATHGoogle Scholar
  3. 3.
    O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Programming in a Arbitrary Language. Genetic Programming, vol. 4. Kluwer Academic Publishers, Dordrecht (2003)CrossRefzbMATHGoogle Scholar
  4. 4.
    Ryan, C., O’Neill, M.: Grammatical evolution: A steady state approach. In: Late Breaking Papers, Genetic Programming 1998, pp. 180–185 (1998)Google Scholar
  5. 5.
    Rothlauf, F., Goldberg, D.E.: Tree network design with genetic algorithms – an investigation in the locality of the prüfernumber encoding. In: Brave, S., Wu, A.S. (eds.) Late Breaking Papers at the Genetic and Evolutionary Computation Conference 1999, Orlando, Florida, USA, pp. 238–244. Omni Press (1999)Google Scholar
  6. 6.
    Gottlieb, J., Raidl, G.: Characterizing locality in decoder-based eas for the multidimensional knapsack problem. In: Fonlupt, C., Hao, J.-K., Lutton, E., Schoenauer, M., Ronald, E. (eds.) AE 1999. LNCS, vol. 1829, pp. 38–52. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  7. 7.
    Gottlieb, J., Raidl, G.R.: The effects of locality on the dynamics of decoderbased evolutionary search. In: Whitley, D., Goldberg, D.E., Cantú-Paz, E., Spector, L., Parmee, L., Beyer, H.G. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference 2000, San Francisco, CA, pp. 283–290. Morgan Kaufmann Publishers, San Francisco (2000)Google Scholar
  8. 8.
    Gottlieb, J., Julstrom, B.A., Raidl, G.R., Rothlauf, F.: Prüfer numbers: A poor representation of spanning trees for evolutionary search. IlliGAL Report No. 2001001, University of Illinois at Urbana-Champaign, Urbana (2001)Google Scholar
  9. 9.
    Rothlauf, F., Goldberg, D.E.: Prüfernumbers and genetic algorithms: A lesson on how the low locality of an encoding can harm the performance of GAs. In: Deb, K., Rudolph, G., Lutton, E., Merelo, J.J., Schoenauer, M., Schwefel, H.-P., Yao, X. (eds.) PPSN 2000. LNCS, vol. 1917, pp. 395–404. Springer, Berlin (2000)CrossRefGoogle Scholar
  10. 10.
    Rothlauf, F.: Representations for Genetic and Evolutionary Algorithms, 2nd edn. Springer, Heidelberg (2006)zbMATHGoogle Scholar
  11. 11.
    Selkow, S.M.: The tree-to-tree editing problem. Information Processing Letters 6, 184–186 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Tai, K.C.: The tree-to-tree correction problem. Journal of the ACM 26, 422–433 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Zhang, K., Shasha, D.: Simple fast algorithms for the editing distance between trees and related problems. SIAM Journal on Computing 18, 1245–1262 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Keller, B.: Genetic programming using genotype-phenotype mapping from linear genomes into linear phenotypes. In: Koza, J., et al. (eds.) Proceedings of First Annual Conference on Genetic Programming, pp. 116–122. MIT Press, Cambridge (1996)Google Scholar
  15. 15.
    O’Reilly, U.M.: Using a distance metric on genetic programs to understand genetic operators. In: Late breaking papers at the 1997 Genetic Programming Conference, pp. 199–206. Stanford University, CA (1997)Google Scholar
  16. 16.
    Brameier, M., Banzhaf, W.: Explicit control of diversity and effective variation distance in linear genetic programming. In: Foster, J.A., Lutton, E., Miller, J., Ryan, C., Tettamanzi, A.G.B. (eds.) EuroGP 2002. Brameier, M., Banzhaf, W., vol. 2278, pp. 162–171. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  17. 17.
    Igel, C.: Causality of hierarchical variable length representations. In: Proceedings of 1998 IEEE International Conference on Evolutionary Computation, pp. 324–329 (1998)Google Scholar
  18. 18.
    Igel, C., Chellapilla, K.: Investigating the influence of depth and degree of genotypic change on fitness in genetic programming. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, Orlando, Florida, USA, vol. 2, pp. 1061–1068. Morgan Kaufmann, San Francisco (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Franz Rothlauf
    • 1
  • Marie Oetzel
    • 1
  1. 1.Department of Business Administration and Information SystemsUniversity of MannheimMannheimGermany

Personalised recommendations