Advertisement

The Halting Probability in Von Neumann Architectures

  • W. B. Langdon
  • R. Poli
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3905)

Abstract

Theoretical models of Turing complete linear genetic programming (GP) programs suggest the fraction of halting programs is vanishingly small. Convergence results proved for an idealised machine, are tested on a small T7 computer with (finite) memory, conditional branches and jumps. Simulations confirm Turing complete fitness landscapes of this type hold at most a vanishingly small fraction of usable solutions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Langdon, W.B., Poli, R.: Foundations of Genetic Programming (2002)Google Scholar
  2. 2.
    McPhee, N.F., Poli, R.: Using schema theory to explore interactions of multiple operators. In: Langdon, W.B., et al. (eds.) GECCO 2002, pp. 853–860 (2002)Google Scholar
  3. 3.
    Rosca, J.: A probabilistic model of size drift. In: Riolo, R.L., Worzel, B. (eds.) Genetic Programming Theory and Practice, pp. 119–136. Kluwer, Dordrecht (2003)CrossRefGoogle Scholar
  4. 4.
    Sastry, K., O’Reilly, U.-M., Goldberg, D.E., Hill, D.: Building block supply GP. In: Genetic Programming Theory and Practice, pp. 137–154. Kluwer, Dordrecht (2003)CrossRefGoogle Scholar
  5. 5.
    Mitavskiy, B., Rowe, J.E.: A schema-based version of Geiringer’s theorem for nonlinear genetic programming with homologous crossover. In: Wright, A.H., Vose, M.D., De Jong, K.A., Schmitt, L.M. (eds.) FOGA 2005. LNCS, vol. 3469, pp. 156–175. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Daida, J.M., Hilss, A.M., Ward, D.J., Long, S.L.: Visualizing tree structures in genetic programming. Genetic Programming and Evolvable Machines 6(1), 79–110Google Scholar
  7. 7.
    Langdon, W.B.: Convergence rates for the distribution of program outputs. In: Langdon, W.B., et al. (eds.) GECCO 2002, New York, July 9-13, pp. 812–819 (2002)Google Scholar
  8. 8.
    Langdon, W.B.: How many good programs are there? How long are they? In: De Jong, K.A., et al. (eds.) FOGA 7, pp. 183–202. Morgan Kaufmann. Published, San Francisco (2003)Google Scholar
  9. 9.
    Langdon, W.B.: The distribution of reversible functions is Normal. In: Genetic Programming Theory and Practise, pp. 173–188. Kluwer Academic Publishers, Dordrecht (2003)CrossRefGoogle Scholar
  10. 10.
    Langdon, W.B.: Convergence of program fitness landscapes. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2724, pp. 1702–1714. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  11. 11.
    Teller, A.: Turing completeness in the language of GP with indexed memory. In: 1994 IEEE World Congress on Computational Intelligence, pp. 136–141 (1994)Google Scholar
  12. 12.
    Langdon, W.B.: Quadratic bloat in genetic programming. In: Whitley, D., et al. (eds.) GECCO 2000, pp. 451–458 (2000)Google Scholar
  13. 13.
    Langdon, W.B., Poli, R.: On Turing complete T7 and MISC F-4 program fitness landscapes. Technical Report CSM-445, University of Essex, UK (2005)Google Scholar
  14. 14.
    Maxwell III, S.R.: Experiments with a coroutine model for genetic programming. In: 1994 IEEE World Congress on Computational Intelligence, pp. 413–417a (1994)Google Scholar
  15. 15.
    Chaitin, G.J.: An algebraic equation for the halting probability. In: R. Herken, ed., The Universal Turing Machine A Half-Century Survey, pp. 279–283. OUP (1988)Google Scholar
  16. 16.
    Calude, C.S., Dinneen, M.J., Shu, C.-K.: Computing a glimpse of randomness. Experimental Mathematics 11(3), 361–370 (2002)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • W. B. Langdon
    • 1
  • R. Poli
    • 1
  1. 1.Department of Computer ScienceUniversity of EssexUK

Personalised recommendations