On the Confluence of λ-Calculus with Conditional Rewriting

  • Frédéric Blanqui
  • Claude Kirchner
  • Colin Riba
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3921)


The confluence of untyped λ-calculus with unconditional rewriting has already been studied in various directions. In this paper, we investigate the confluence of λ-calculus with conditional rewriting and provide general results in two directions. First, when conditional rules are algebraic. This extends results of Müller and Dougherty for unconditional rewriting. Two cases are considered, whether beta-reduction is allowed or not in the evaluation of conditions. Moreover, Dougherty’s result is improved from the assumption of strongly normalizing β-reduction to weakly normalizing β-reduction. We also provide examples showing that outside these conditions, modularity of confluence is difficult to achieve. Second, we go beyond the algebraic framework and get new confluence results using a restricted notion of orthogonality that takes advantage of the conditional part of rewrite rules.


Orthonormal System Critical Pair Complete Development Proof Assistant Lambda Calculus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Avenhaus, J., Loría-Sáenz, C.: Higher order conditional rewriting and narrowing. In: Jouannaud, J.-P. (ed.) CCL 1994. LNCS, vol. 845, pp. 269–284. Springer, Heidelberg (1994)CrossRefGoogle Scholar
  2. 2.
    Barbanera, F., Fernández, M., Geuvers, H.: Modularity of Strong Normalisation and Confluence in the Algebraic λ-Cube. Journal of Functional Programming 7(6), 613–660 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Barendregt, H.P.: The Lambda-Calculus, its syntax and semantics. In: Studies in Logic and the Foundation of Mathematics, 2nd edn., North Holland, Amsterdam (1984)Google Scholar
  4. 4.
    Barthe, G., Cirstea, H., Kirchner, C., Liquori, L.: Pure Patterns Type Systems. In: Principles of Programming Languages, ACM Press, New Orleans, USA (2003)Google Scholar
  5. 5.
    Blanqui, F.: Definitions by rewriting in the calculus of constructions. Mathematical Structures In Computer Science 15(1), 37–92 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Blanqui, F., Kirchner, C., Riba, C.: On the confluence of lambda-calculus with conditional rewriting. HAL technical report (October 2005)Google Scholar
  7. 7.
    Breazu-Tannen, V.: Combining algebra and higher-order types. In: 3rd IEEE Symposium on Logic in Computer Science, Edinburg (UK) (July 1988)Google Scholar
  8. 8.
    Breazu-Tannen, V., Gallier, J.: Polymorphic rewriting conserves algebraic confluence. Information and Computation 114(1), 1–29 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Cirstea, H., Kirchner, C.: The rewriting calculus — Part I and II. Logic Journal of the Interest Group in Pure and Applied Logics 9(3), 427–498 (2001)zbMATHGoogle Scholar
  10. 10.
    Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science. Formal Models and Sematics (B), vol. B, pp. 243–320. North-Holland, Amsterdam (1990)Google Scholar
  11. 11.
    Dershowitz, N., Okada, M.: A rationale for conditional equational programming. Theoretical Computer Science 75, 111–138 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Dougherty, D.J.: Adding algebraic rewriting to the untyped lambda calculus. Information and Computation 101(2), 251–267 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. Journal of Automated Reasoning 31(1), 33–72 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Gramlich, B.: On termination and confluence properties of disjoint and constructor-sharing conditional rewrite systems. Theoretical Computer Science 165(1), 97–131 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Jouannaud, J.-P., Okada, M.: Executable higher-order algebraic specification languages. In: Proceedings of LICS 1991 (1991)Google Scholar
  16. 16.
    Klop, J.W.: Combinatory Reduction Systems. Mathematical Center Tracts, vol. 127. CWI PhD Thesis (1980)Google Scholar
  17. 17.
    Klop, J.W., van Oostrom, V., van Raamsdonk, F.: Combinatory reduction systems: introduction and survey. TCS 121, 279–308 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Middeldorp, A.: Completeness of Combinations of Conditional Constructor Systems. Journal of Symbolic Computation 17(1), 3–21 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Müller, F.: Confluence of the lambda calculus with left linear algebraic rewriting. Information Processing Letters 41, 293–299 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Nipkow, T.: Higher-order critical pairs. In: Proceedings of LICS 1991 (1991)Google Scholar
  21. 21.
    Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, Heidelberg (2002)CrossRefzbMATHGoogle Scholar
  22. 22.
    Takahashi, M.: Lambda-calculi with conditional rules. In: Bezem, M., Groote, J.F. (eds.) TLCA 1993. LNCS, vol. 664, pp. 406–417. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  23. 23.
    van Oostrom, V., van Raamsdonk, F.: Weak orthogonality implies confluence: the higher-order case. In: Matiyasevich, Y.V., Nerode, A. (eds.) LFCS 1994. LNCS, vol. 813, Springer, Heidelberg (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Frédéric Blanqui
    • 1
  • Claude Kirchner
    • 1
  • Colin Riba
    • 2
  1. 1.INRIA & LORIAFrance
  2. 2.INPL & LORIAFrance

Personalised recommendations