Advertisement

A Semantic Approach to Interpolation

  • Andrei Popescu
  • Traian Florin Şerbănuţă
  • Grigore Roşu
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3921)

Abstract

Interpolation results are investigated for various types of formulae. By shifting the focus from syntactic to semantic interpolation, we generate, prove and classify a series of interpolation results for first-order logic. A few of these results non-trivially generalize known interpolation results. All the others are new.

Keywords

Closure Operator Logical System Horn Clause Interpolation Theorem Module Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Andréka, H., Németi, I.: A general axiomatizability theorem formulated in terms of cone-injective subcategories. In: Universal Algebra, vol. 29, pp. 13–35 (1982)Google Scholar
  2. 2.
    Barwise, J., Feferman, J.: Model-Theoretic Logics. Springer, Heidelberg (1985)zbMATHGoogle Scholar
  3. 3.
    Bergstra, J., Heering, J., Klint, P.: Module algebra. Journal of the Association for Computing Machinery 37(2), 335–372 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Borzyszkowski, T.: Generalized interpolation in CASL. Inf. Process. Lett. 76(1-2), 19–24 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Borzyszkowski, T.: Logical systems for structured specifications. Theoretical Computer Science 286(2), 197–245 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Chang, C.C., Keisler, H.J.: Model Theory. North-Holland, Amsterdam (1973)zbMATHGoogle Scholar
  7. 7.
    Craig, W.: Linear reasoning. A new form of the Herbrand-Gentzen Theorem. Journal of Symbolic Logic 22, 250–268 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Diaconescu, R.: Grothendieck institutions. Appl. Categorical Struct. 10(4), 383–402 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Diaconescu, R.: An institution-independent proof of Craig interpolation theorem. Studia Logica 77(1), 59–79 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Diaconescu, R.: Interpolation in Grothendieck institutions. Theoretical Computer Science 311, 439–461 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Diaconescu, R., Futatsugi, K.: CafeOBJ Report. AMAST Series in Computing, vol. 6. World Scientific, Singapore (1998)zbMATHGoogle Scholar
  12. 12.
    Diaconescu, R., Futatsugi, K.: Logical foundations of CafeOBJ. Theoretical Computer Science 285, 289–318 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Diaconescu, R., Goguen, J., Stefaneas, P.: Logical support for modularization. In: Huet, G., Plotkin, G. (eds.) Logical Environments, Cambridge, pp. 83–130 (1993)Google Scholar
  14. 14.
    Dimitrakos, T., Maibaum, T.: On a generalized modularization theorem. Information Processing Letters 74(1–2), 65–71 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Gallier, J.H.: Logic for computer science. Foundations of automatic theorem proving. Harper & Row (1986)Google Scholar
  16. 16.
    Goguen, J.: Types as theories. In: Topology and Category Theory in Computer Science, Oxford, pp. 357–390 (1991)Google Scholar
  17. 17.
    Goguen, J., Burstall, R.: Institutions: Abstract model theory for specification and programming. Journal of the ACM 39(1), 95–146 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Goguen, J., Roşu, G.: Composing hidden information modules over inclusive institutions. In: Owe, O., Krogdahl, S., Lyche, T. (eds.) From Object-Orientation to Formal Methods. LNCS, vol. 2635, pp. 96–123. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Bicarregui, D.G.J., Dimitrakos, T., Maibaum, T.: Interpolation in practical formal development. Logic Journal of the IGPL 9(1), 231–243 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Monk, J.D.: Mathematical Logic. Springer, Heidelberg (1976)CrossRefzbMATHGoogle Scholar
  21. 21.
    Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM Trans. Program. Lang. Syst. 1(2), 245–257 (1979)CrossRefzbMATHGoogle Scholar
  22. 22.
    Németi, I., Sain, I.: Cone-implicational subcategories and some Birkhoff-type theorems. In: Universal Algebra, vol. 29, pp. 535–578 (1982)Google Scholar
  23. 23.
    Oppen, D.C.: Complexity, convexity and combinations of theories. Theoretical Computer Science 12, 291–302 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Popescu, A., Şerbănuţă, T., Roşu, G.: A semantic approach to interpolation. Technical Report UIUCDCS-R-2005-2643, University of Illinois at Urbana-ChampaignGoogle Scholar
  25. 25.
    Roşu, G., Goguen, J.: On equational Craig interpolation. Journal of Universal Computer Science 6, 194–200 (2000)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Rodenburg, P.H.: Interpolation in conditional equational logic. Fundam. Inform. 15(1), 80–85 (1991)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Rodenburg, P.H.: A simple algebraic proof of the equational interpolation theorem. Algebra Universalis 28, 48–51 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Rodenburg, P.H., van Glabbeek, R.: An interpolation theorem in equational logic. Technical Report CS-R8838, CWI (1988)Google Scholar
  29. 29.
    Sannella, D., Tarlecki, A.: Specifications in an arbitrary institution. Information and Control 76, 165–210 (1988)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Andrei Popescu
    • 1
  • Traian Florin Şerbănuţă
    • 1
  • Grigore Roşu
    • 1
  1. 1.Department of Computer ScienceUniversity of Illinois at Urbana-ChampaignUSA

Personalised recommendations