A Finite Model Construction for Coalgebraic Modal Logic

  • Lutz Schröder
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3921)


In recent years, a tight connection has emerged between modal logic on the one hand and coalgebras, understood as generic transition systems, on the other hand. Here, we prove that (finitary) coalgebraic modal logic has the finite model property. This fact not only reproves known completeness results for coalgebraic modal logic, which we push further by establishing that every coalgebraic modal logic admits a complete axiomatization of rank 1; it also enables us to establish a generic decidability result and a first complexity bound. Examples covered by these general results include, besides standard Hennessy-Milner logic, graded modal logic and probabilistic modal logic.


Modal Logic Proof System Propositional Variable Kripke Model Propositional Formula 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Bartels, F., Sokolova, A., de Vink, E.: A hierarchy of probabilistic system types. In: Coalgebraic Methods in Computer Science. ENTCS, vol. 82, Elsevier, Amsterdam (2003)Google Scholar
  2. 2.
    Blackburn, P., de Rijke, M., Venema, Y.: Modal Logic, Cambridge (2001)Google Scholar
  3. 3.
    Carlyle, J.W., Paz, A.: Realizations by stochastic finite automata. J. Comput. System Sci. 5, 26–40 (1971)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chellas, B.: Modal Logic. Cambridge (1980)Google Scholar
  5. 5.
    Cîrstea, C., Pattinson, D.: Modular construction of modal logics. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 258–275. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    D’Agostino, G., Visser, A.: Finality regained: A coalgebraic study of Scott-sets and multisets. Arch. Math. Logic 41, 267–298 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Heifeitz, A., Mongin, P.: The modal logic of probability. In: Theoretical Aspects of Rationality and Knowledge, pp. 175–186. Morgan Kaufmann, San Francisco (1998)Google Scholar
  8. 8.
    Heifetz, A., Mongin, P.: Probabilistic logic for type spaces. Games and Economic Behavior 35, 31–53 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Hennessy, M., Milner, R.: Algebraic laws for non-determinism and concurrency. J. ACM 32, 137–161 (1985)CrossRefzbMATHGoogle Scholar
  10. 10.
    Jacobs, B.: Towards a duality result in the modal logic of coalgebras. In: Coalgebraic Methods in Computer Science. ENTCS, vol. 33, Elsevier, Amsterdam (2000)Google Scholar
  11. 11.
    Kupke, C., Kurz, A., Pattinson, D.: Algebraic semantics for coalgebraic logics. In: Coalgebraic Methods in Computer Science. ENTCS, vol. 106, pp. 219–241. Elsevier, Amsterdam (2004)Google Scholar
  12. 12.
    Kurz, A.: Specifying coalgebras with modal logic. Theoret. Comput. Sci. 260, 119–138 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Larsen, K., Skou, A.: Bisimulation through probabilistic testing. Inform. Comput. 94, 1–28 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Mossakowski, T., Schröder, L., Roggenbach, M., Reichel, H.: Algebraic-co-algebraic specification in CoCASL. J. Logic Algebraic Programming (to appear)Google Scholar
  15. 15.
    Pattinson, D.: Semantical principles in the modal logic of coalgebras. In: Ferreira, A., Reichel, H. (eds.) STACS 2001. LNCS, vol. 2010, pp. 514–526. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  16. 16.
    Pattinson, D.: Coalgebraic modal logic: Soundness, completeness and decidability of local consequence. Theoret. Comput. Sci. 309, 177–193 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Pattinson, D.: Expressive logics for coalgebras via terminal sequence induction. Notre Dame J. Formal Logic 45, 19–33 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Popkorn, S.: First Steps in Modal Logic. Cambridge (1994)Google Scholar
  19. 19.
    Rößiger, M.: Coalgebras and modal logic. In: Coalgebraic Methods in Computer Science. ENTCS, vol. 33, Elsevier, Amsterdam (2000)Google Scholar
  20. 20.
    Rothe, J., Tews, H., Jacobs, B.: The Coalgebraic Class Specification Language CCSL. J. Universal Comput. Sci. 7, 175–193 (2001)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Rutten, J.: Universal coalgebra: A theory of systems. Theoret. Comput. Sci. 249, 3–80 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Schrijver, A.: Theory of linear and integer programming. Wiley Interscience, Chichester (1986)zbMATHGoogle Scholar
  23. 23.
    Schröder, L.: Expressivity of coalgebraic modal logic: the limits and beyond. In: Sassone, V. (ed.) FOSSACS 2005. LNCS, vol. 3441, pp. 440–454. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  24. 24.
    Schröder, L., Pattinson, D.: PSPACE reasoning for coalgebraic modal logic (in preparation)Google Scholar
  25. 25.
    Tobies, S.: PSPACE reasoning for graded modal logics. J. Logic Computation 11, 85–106 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Turakainen, P.: On the minimization of linear space automata. Ann. Acad. Sci. Fenn. Ser. A I 506, 15 (1972)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Viglizzo, I.: Final sequences and final coalgebras for measurable spaces. In: Fiadeiro, J.L., Harman, N.A., Roggenbach, M., Rutten, J. (eds.) CALCO 2005. LNCS, vol. 3629, pp. 395–407. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Lutz Schröder
    • 1
  1. 1.Department of Computer ScienceUniversity of BremenGermany

Personalised recommendations