Linkable Democratic Group Signatures

  • Mark Manulis
  • Ahmad-Reza Sadeghi
  • Jörg Schwenk
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3903)

Abstract

In a variety of group-oriented applications cryptographic primitives like group signatures or ring signatures are valuable methods to achieve anonymity of group members. However, in their classical form, these schemes cannot be deployed for applications that simultaneously require (i) to avoid centralized management authority like group manager and (ii) the signer to be anonymous only against non-members while group members have rights to trace and identify the signer.

The idea of recently introduced democratic group signatures is to provide these properties. Based on this idea we introduce a group-oriented signature scheme that allows the group members to trace the identity of any other group member who issued a signature while non-members are only able to link the signatures issued by the same signer without tracing. For this purpose the signature scheme assigns to every group member a unique pseudonym that can be used by any non-member verifier to communicate with the anonymous signer from the group. We present several group-oriented application scenarios where this kind of linkability is essential.

We propose a concrete linkable democratic group signature scheme for two-parties, prove its security in the random oracle model, and describe how to modularly extend it to the multi-party case.

Keywords

democratic group signatures anonymity pseudonymity linkability group communication 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Amir, Y., Kim, Y., Nita-Rotaru, C., Tsudik, G.: On the performance of group key agreement protocols. ACM Transactions on Information and System Security 7(3), 457–488 (2004)CrossRefGoogle Scholar
  2. 2.
    Bellare, M., Micciancio, D., Warinschi, B.: Foundations of group signatures: Formal definitions, simplified requirements, and a construction based on general assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 614–629. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  3. 3.
    Bellare, M., Rogaway, P.: Random oracles are practical: a paradigm for designing efficient protocols. In: Proceedings of the 1st ACM conference on Computer and communications security, pp. 62–73. ACM Press, New York (1993)CrossRefGoogle Scholar
  4. 4.
    Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: The case of dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Bender, A., Katz, J., Morselli, R.: Ring signatures: Stronger definitions, and constructions without random oracles. In: Theory of Cryptography Conference 2006. LNCS. Springer, Heidelberg (2006) (to appear)Google Scholar
  6. 6.
    Boneh, D.: The Decision Diffie-Hellman problem. In: ANTS-III: Proceedings of the Third International Symposium on Algorithmic Number Theory, pp. 48–63. Springer, Heidelberg (1998)Google Scholar
  7. 7.
    Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 41–55. Springer, Heidelberg (2004)Google Scholar
  8. 8.
    Camenisch, J., Groth, J.: Group signatures: Better efficiency and new theoretical aspects. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 120–133. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  9. 9.
    Camenisch, J., Michels, M.: A group signature scheme with improved efficiency. In: Proceedings of the International Conference on the Theory and Applications of Cryptology and Information Security, pp. 160–174. Springer, Heidelberg (1998)Google Scholar
  10. 10.
    Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)Google Scholar
  11. 11.
    Chaum, D., van Heyst, E.: Group signatures. In: Davies, D.W. (ed.) EUROCRYPT 1991. LNCS, vol. 547, pp. 257–265. Springer, Heidelberg (1991)Google Scholar
  12. 12.
    Feige, U., Lapidot, D., Shamir, A.: Multiple non-interactive zero knowledge proofs under general assumptions. SIAM Journal on Computing 29(1), 1–28 (1999)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Goh, E.-J., Jarecki, S.: A signature scheme as secure as the Diffie-Hellman problem. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 401–415. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Katz, J., Yung, M.: Scalable protocols for authenticated group key exchange. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 110–125. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  15. 15.
    Kiayias, A., Tsiounis, Y., Yung, M.: Traceable signatures. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 571–589. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  16. 16.
    Kiayias, A., Yung, M.: Group signatures with efficient concurrent join. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 198–214. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  17. 17.
    Kim, Y., Perrig, A., Tsudik, G.: Tree-based group key agreement. ACM Transactions on Information and System Security 7(1), 60–96 (2004)CrossRefGoogle Scholar
  18. 18.
    Liu, J.K., Wei, V.K., Wong, D.S.: Linkable spontaneous anonymous group signature for ad hoc groups (extended abstract). In: Wang, H., Pieprzyk, J., Varadharajan, V. (eds.) ACISP 2004. LNCS, vol. 3108, pp. 325–335. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  19. 19.
    Lysyanskaya, A., Rivest, R.L., Sahai, A., Wolf, S.: Pseudonym systems (Extended abstract). In: Heys, H.M., Adams, C.M. (eds.) SAC 1999. LNCS, vol. 1758, pp. 184–199. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  20. 20.
    Manulis, M.: Democratic Group Signatures (On an Example of Joint Ventures – Fast Abstract). In: Fast Abstracts Proceedings of ACM Symposium on Information, Computer and Communications Security (ASIACCS 2006). ACM Press, New York (2006), http://eprint.iacr.org/2005/446 Google Scholar
  21. 21.
    Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  22. 22.
    Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-ciphertext security. In: FOCS 1999: Proceedings of the 40th Annual Symposium on Foundations of Computer Science, p. 543. IEEE Computer Society Press, Los Alamitos (1999)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Mark Manulis
    • 1
  • Ahmad-Reza Sadeghi
    • 1
  • Jörg Schwenk
    • 1
  1. 1.Horst-Görtz InstituteRuhr-University of BochumGermany

Personalised recommendations