Advertisement

Experiments on the Automatic Evolution of Protocols Using Genetic Programming

  • Lidia Yamamoto
  • Christian Tschudin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3854)

Abstract

Truly autonomic networks ultimately require self-modifying, evolving protocol software. Otherwise humans must intervene in every situation that has not been anticipated at design time. For this to become feasible autonomic systems must ensure non-disruptive on-line software evolution. We investigate related code steering techniques in two directions: One is the fully automatic selection of protocol service elements where, depending on device characteristics and current operation environment, each communication entity has to select among a potentially wide variety of protocol implementations providing similar services. The other direction relates to the automatic synthesis of new protocol elements which are the result of optimizing existing implementations for a specific context. In both cases we look at genetic programming as a tool to generate new code and software configurations automatically. In this paper we propose a framework for such a resilient protocol evolution and report on first exploratory results on the adaptation and re-adaptation to environmental conditions, and the elimination of superfluous code.

Keywords

protocol synthesis protocol evolution genetic programming 

References

  1. 1.
    Manna, Z., Waldinger, R.: Fundamentals of Deductive Program Synthesis. IEEE Transactions on Software Engineering 18, 674–704 (1992)CrossRefGoogle Scholar
  2. 2.
    Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming, An Introduction. Morgan Kaufmann Publishers, Inc., San Francisco (1998)CrossRefzbMATHGoogle Scholar
  3. 3.
    Sipper, M., Sanchez, E., Mange, D., Tomassini, M., Perez-Uribe, A., Stauffer, A.: A Phylogenetic, Ontogenetic, and Epigenetic View of Bio-Inspired Hardware Systems. IEEE Transactions on Evolutionary Computation 1 (1997)Google Scholar
  4. 4.
    Andersson, B., Svensson, P., Nordin, P., Nordahl, M.: On-line Evolution of Control for a Four-Legged Robot Using Genetic Programming. In: Oates, M.J., Lanzi, P.L., Li, Y., Cagnoni, S., Corne, D.W., Fogarty, T.C., Poli, R., Smith, G.D. (eds.) EvoIASP 2000, EvoWorkshops 2000, EvoFlight 2000, EvoSCONDI 2000, EvoSTIM 2000, EvoTEL 2000, and EvoROB/EvoRobot 2000. LNCS, vol. 1803, pp. 319–326. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  5. 5.
    Steels, L.: Emergent functionality in robotic agents through on-line evolution. In: Proceedings of AlifeIV. MIT Press, Cambridge (1994)Google Scholar
  6. 6.
    Nakano, T., Suda, T.: Adaptive and Evolvable Network Services. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 151–162. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  7. 7.
    Probert, R.L., Saleh, K.: Synthesis of Communication Protocols: Survey and Assessment. IEEE Transactions on Computers 40, 468–476 (1991)CrossRefGoogle Scholar
  8. 8.
    Perrig, A., Song, D.: A First Step towards the Automatic Generation of Security Protocols. In: Proc. Network and Distributed System Security (NDSS 2000) (2000)Google Scholar
  9. 9.
    Song, D., Perrig, A., Phan, D.: AGVI – Automatic Generation, Verification, and Implementation of Security Protocols. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS, vol. 2102, p. 241. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Sharples, N., Wakeman, I.: Protocol construction using genetic search techniques. In: Oates, M.J., Lanzi, P.L., Li, Y., Cagnoni, S., Corne, D.W., Fogarty, T.C., Poli, R., Smith, G.D. (eds.) EvoIASP 2000, EvoWorkshops 2000, EvoFlight 2000, EvoSCONDI 2000, EvoSTIM 2000, EvoTEL 2000, and EvoROB/EvoRobot 2000. LNCS, vol. 1803, pp. 235–246. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  11. 11.
    Sharples, N.: Evolutionary Approaches to Adaptive Protocol Design. PhD dissertation, University of Sussex, UK (2001)Google Scholar
  12. 12.
    Araújo, S.G., Pedroza, A.C.P., Mesquita, A.C.: Evolutionary Synthesis of Communication Protocols. In: 10th International Conference on Telecommunications (ICT 2003), vol. 2, pp. 986–993 (2003)Google Scholar
  13. 13.
    Whisnant, K., Kalbarczyk, Z.T., Iyer, R.K.: A system model for dynamically reconfigurable software. IBM Systems Journal 42, 45–59 (2003)CrossRefGoogle Scholar
  14. 14.
    Ruf, L., Keller, R., Plattner, B.: A Scalable High-performance Router Platform Supporting Dynamic Service Extensibility On Network And Host Processors. In: Proceedings of the 2004 ACS/IEEE International Conference on Pervasive Services (ICPS 2004), Beirut, Lebanon, pp. 19–23 (2004)Google Scholar
  15. 15.
    Hutchinson, N.C., Peterson, L.L.: The x-Kernel: An architecture for implementing network protocols. IEEE Transactions on Software Engineering 17, 64–76 (1991)CrossRefGoogle Scholar
  16. 16.
    Plagemann, T.: A Framework for Dynamic Protocol Configuration. PhD dissertation, Swiss Federal Institute of Technology Zurich, Zurich, Switzerland (1994)Google Scholar
  17. 17.
    Patel, P., Wetherall, D., Lepreau, J., Whitaker, A.: TCP Meets Mobile Code. In: Proc. of the Ninth Workshop on Hot Topics in Operating Systems. IEEE Computer Society, Los Alamitos (2003)Google Scholar
  18. 18.
    Tschudin, C., Yamamoto, L.: A Metabolic Approach to Protocol Resilience. In: Smirnov, M. (ed.) WAC 2004. LNCS, vol. 3457, pp. 191–206. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Banâtre, J.P., Métayer, D.L.: Gamma and the Chemical Reaction Model. Internal Publication PI-984, INRIA, France (1996)Google Scholar
  20. 20.
    Banâtre, J.P., Radenac, Y., Fradet, P.: Chemical Specification of Autonomic Systems. In: Proc 13th International Conference on Intelligent and Adaptive Systems and Software Engineering (IASSE 2004), pp. 72–79 (2004)Google Scholar
  21. 21.
    Tschudin, C.: Fraglets - a Metabolistic Execution Model for Communication Protocols. In: Proc. 2nd Annual Symposium on Autonomous Intelligent Networks and Systems (AINS), Menlo Park, USA (2003)Google Scholar
  22. 22.
    Luke, S.: Issues in Scaling Genetic Programming: Breeding Strategies, Tree Generation, and Code Bloat. PhD dissertation, University of Maryland, USA (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Lidia Yamamoto
    • 1
  • Christian Tschudin
    • 1
  1. 1.Computer Science DepartmentUniversity of BaselBaselSwitzerland

Personalised recommendations