Detecting Similarities in Ontologies with the SOQA-SimPack Toolkit

  • Patrick Ziegler
  • Christoph Kiefer
  • Christoph Sturm
  • Klaus R. Dittrich
  • Abraham Bernstein
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3896)


Ontologies are increasingly used to represent the intended real-world semantics of data and services in information systems. Unfortunately, different databases often do not relate to the same ontologies when describing their semantics. Consequently, it is desirable to have information about the similarity between ontology concepts for ontology alignment and integration. This paper presents the SOQA-SimPack Toolkit (SST), an ontology language independent Java API that enables generic similarity detection and visualization in ontologies. We demonstrate SST’s usefulness with the SOQA-SimPack Toolkit Browser, which allows users to graphically perform similarity calculations in ontologies.


Similarity Measure Virtual Organization Ontology Concept Ontology Language Semantic Interoperability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baeza-Yates, R., Ribeiro-Neto, B.d.a.: Modern Information Retrieval. ACM Press, New York (1999)Google Scholar
  2. 2.
    Bernstein, A., Kaufmann, E., Kiefer, C., Bürki, C.: SimPack: A Generic Java Library for Similarity Measures in Ontologies. Technical report, University of Zurich, Department of Informatics (2005),
  3. 3.
    Ehrig, M., Haase, P., Stojanovic, N., Hefke, M.: Similarity for Ontologies - A Comprehensive Framework. In: Workshop Enterprise Modelling and Ontology: Ingredients for Interoperability, PAKM 2004 (December 2004)Google Scholar
  4. 4.
    Euzénat, J., Loup, D., Touzani, M., Valtchev, P.: Ontology Alignment with OLA. In: 3rd EON Workshop, 3rd Int. Semantic Web Conference, pp. 333–337 (2004)Google Scholar
  5. 5.
    Farquhar, A., Fikes, R., Rice, J.: The Ontolingua Server: A Tool for Collaborative Ontology Construction. IJHCS 46(6), 707–727 (1997)Google Scholar
  6. 6.
    Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns. In: Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading (1995)Google Scholar
  7. 7.
    Gentner, D., Medina, J.: Similarity and the Development of Rules. Cognition 65, 263–297 (1998)CrossRefGoogle Scholar
  8. 8.
    Lenat, D.B.: CYC: A Large-Scale Investment in Knowledge Infrastructure. Communications of the ACM 38(11), 32–38 (1995)Google Scholar
  9. 9.
    Levenshtein, V.I.: Binary Codes Capable of Correcting Deletions, Insertions and Reversals. Soviet Physics Doklady 10, 707–710 (1966)MathSciNetGoogle Scholar
  10. 10.
    Lin, D.: An Information-Theoretic Definition of Similarity. In: 15th International Conference on Machine Learning, pp. 296–304. Morgan Kaufmann, San Francisco (1998)Google Scholar
  11. 11.
    Miller, G.A.: WordNet: A Lexical Database for English. Communications of the ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  12. 12.
    Noy, N.F., Musen, M.A.: The PROMPT Suite: Interactive Tools for Ontology Merging and Mapping. IJHCS 59(6), 983–1024 (2003)Google Scholar
  13. 13.
    Porter, M.F.: An Algorithm for Suffix Stripping. Program 14(3), 130–137 (1980)Google Scholar
  14. 14.
    Lord, P.W., Stevens, R., Brass, A., Goble, C.A.: Investigating Semantic Similarity Measures Across the Gene Ontology: The Relationship Between Sequence and Annotation. Bioinformatics 19(10), 1275–1283 (2003)CrossRefGoogle Scholar
  15. 15.
    Rada, R., Mili, H., Bicknell, E., Blettner, M.: Development and Application of a Metric on Semantic Nets. IEEE Transactions on Systems, Man and Cybernetics, 17–30 (1989)Google Scholar
  16. 16.
    Resnik, P.: Using Information Content to Evaluate Semantic Similarity in a Taxonomy. In: IJCAI, pp. 448–453 (1995)Google Scholar
  17. 17.
    Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-Hill, New York (1983)zbMATHGoogle Scholar
  18. 18.
    Shasha, D., Zhang, K.: Approximate Tree Pattern Matching. In: Pattern Matching Algorithms, pp. 341–371. Oxford University Press, Oxford (1997)Google Scholar
  19. 19.
    Strehl, A., Ghosh, J., Mooney, R.: Impact of Similarity Measures on Web-page Clustering. In: 17th National Conference on Artificial Intelligence: Workshop of Artificial Intelligence for Web Search, July, pp. 58–64. AAAI, Menlo Park (2000)Google Scholar
  20. 20.
    Wu, Z., Palmer, M.: Verb Semantics and Lexical Selection. In: 32nd. Annual Meeting of the Association for Computational Linguistics, pp. 133–138. New Mexico State University, New Mexico (1994)CrossRefGoogle Scholar
  21. 21.
    Ziegler, P., Dittrich, K.R.: User-specific semantic integration of heterogeneous data: The SIRUP approach. In: Bouzeghoub, M., Goble, C.A., Kashyap, V., Spaccapietra, S. (eds.) ICSNW 2004. LNCS, vol. 3226, pp. 44–64. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  22. 22.
    Ziegler, P., Sturm, C., Dittrich, K.R.: Unified Querying of Ontology Languages with the SIRUP Ontology Query API. In: Datenbanksysteme in Business, Technologie und Web (BTW 2005), Karlsruhe, Germany, March (2-4). Lecture Notes in Informatics, vol. 65, pp. 325–344. Gesellschaft für Informatik, GI (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Patrick Ziegler
    • 1
  • Christoph Kiefer
    • 1
  • Christoph Sturm
    • 1
  • Klaus R. Dittrich
    • 1
  • Abraham Bernstein
    • 1
  1. 1.DBTG and DDIS, Department of InformaticsUniversity of ZurichZürichSwitzerland

Personalised recommendations