Advertisement

Distributed Spatial Clustering in Sensor Networks

  • Anand Meka
  • Ambuj K. Singh
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3896)

Abstract

Sensor networks monitor physical phenomena over large geographic regions. Scientists can gain valuable insight into these phenomena, if they understand the underlying data distribution. Such data characteristics can be efficiently extracted through spatial clustering, which partitions the network into a set of spatial regions with similar observations. The goal of this paper is to perform such a spatial clustering, specifically δ-clustering, where the data dissimilarity between any two nodes inside a cluster is at most δ. We present an in-network clustering algorithm ELink that generates good δ-clusterings for both synchronous and asynchronous networks in \(O(\sqrt{N} {\rm log}N)\) time and in O(N) message complexity, where N denotes the network size. Experimental results on both real world and synthetic data sets show that ELink’s clustering quality is comparable to that of a centralized algorithm, and is superior to other alternative distributed techniques. Furthermore, ELink performs 10 times better than the centralized algorithm, and 3-4 times better than the distributed alternatives in communication costs. We also develop a distributed index structure using the generated clusters that can be used for answering range queries and path queries. The query algorithms direct the spatial search to relevant clusters, leading to performance gains of up to a factor of 5 over competing techniques.

Keywords

Sensor Network Sentinel Node Sensor Node Communication Cost Spatial Cluster 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The EROS data center for geological survey., http://edc.usgs.gov/geodata/
  2. 2.
    Tropical atmosphere ocean project., http://www.pmel.noaa.gov/tao/
  3. 3.
    Crossbow, Inc. Wireless sensor networks, http://www.xbow.com/
  4. 4.
    Awerbuch, B.: Complexity of network synchronization. JACM 32(4), 804–823 (1985)zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Berry, J., Fleischer, L., Hart, W.E., Phillips, C.A.: Sensor placement in municipal water networks. World Water and Environmental Resources Congress (2003)Google Scholar
  6. 6.
    Chintalapudi, K.K., Govindan, R.: Localized edge detection in a sensor field. In: SNPA (2003)Google Scholar
  7. 7.
    Ciaccia, P., Patella, M., Zevula, P.: M-tree: An efficient access method for similarity search in metric spaces. In: VLDB (1997)Google Scholar
  8. 8.
    Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the expectation-maximization algorithm. Journal of Royal Statistical Society 9(1), 1–38 (1999)MathSciNetGoogle Scholar
  9. 9.
    Deshpande, A., Guestrin, C., Hong, W., Madden, S.: Exploiting correlated attributes in acquisitonal query processing. In: ICDE (2005)Google Scholar
  10. 10.
    Elnahrawy, E., Nath, B.: Context-aware sensors. In: Karl, H., Wolisz, A., Willig, A. (eds.) EWSN 2004. LNCS, vol. 2920, pp. 77–93. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Estrin, D., Govindan, R., Heidemann, J.: Next century challenges: Scalable coordination in sensor networks. In: MOBICOM (1999)Google Scholar
  12. 12.
    Ganesan, D., Estrin, D., Heidemann, J.: Dimensions:Why do we need a new data handling architecture for sensor networks? In: SIGCOMM (2003)Google Scholar
  13. 13.
    Ghanti, V., Ramakrishnan, R., Gehrke, J.: Clustering large datasets in arbitrary metric spaces. In: ICDE (1999)Google Scholar
  14. 14.
    Guestrin, C., Bodik, P., Thibaux, R., Paskin, M., Madden, S.: Distributed regression: An efficient framework for modeling sensor network data. In: IPSN (2004)Google Scholar
  15. 15.
    Han, J., Kamber, M.: Data mining: Concepts and techniques. Morgan Kaufmann, San Francisco (2001)Google Scholar
  16. 16.
    Karp, B., Kung, H.T.: GPSR: Greedy perimeter stateless routing for wireless networks. In: MOBICOM (2003)Google Scholar
  17. 17.
    Kotidis, Y.: Snapshot queries: Towards data-centric sensor networks. In: ICDE (2005)Google Scholar
  18. 18.
    Li, Q., DeRosa, M., Rus, D.: Distributed algorithms for guiding navigation across a sensor network. In: MOBICOM (2003)Google Scholar
  19. 19.
    Lund, C., Yannakakis, M.: On the hardness of approximating minimization problems. JACM 41(5), 960–981 (1997)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Madden, S., Franklin, M., Hellerstein, J., Hong, W.: The design of an acquisitional query processor for sensor networks. In: SIGMOD (2003)Google Scholar
  21. 21.
    Meka, A., Singh, A.K.: Distributed algorithms for discovering and mining spatial clusters in sensor networks. UCSB TechReport (2005)Google Scholar
  22. 22.
    Ng, A.Y., Jordan, M., Weiss, Y.: On spectral clustering: Analysis and an algorithm. NIPS (2002)Google Scholar
  23. 23.
    Ng, R.T., Han, J.: Efficient and effective clustering methods for spatial data mining. In: VLDB (1994)Google Scholar
  24. 24.
    Ng, R.T., Han, J.: Efficient clustering methods for spatial data mining. In: VLDB (1997)Google Scholar
  25. 25.
    Olston, C., Loo, B.T., Widom, J.: Adaptive precision setting for cached approximate values. In: SIGMOD (2001)Google Scholar
  26. 26.
    Pourahmadi, M.: Foundations of time series analysis and prediction theory. Wiley, Chichester (2001)zbMATHGoogle Scholar
  27. 27.
    Sheikholeslami, G., Chatterjee, S., Zhang, A.: WaveCluster: A multi-resolution clustering approach for very large spatial databases. In: VLDB (1998)Google Scholar
  28. 28.
    Wang, W., Yang, J., Muntz, R.R.: STING: A statistical information grid approach to spatial data mining. In: VLDB (1997)Google Scholar
  29. 29.
    Yi, B.K., Sidiropoulos, N.D., Johnson, T., Jagadish, H.V., Faloutsos, C.: Online data mining for co-evolving time sequences. In: ICDE (2000)Google Scholar
  30. 30.
    Younis, O., Fahmy, S.: HEED: A hybrid energy-efficient distributed clustering for adhoc sensor networks. INFOCOM (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Anand Meka
    • 1
  • Ambuj K. Singh
    • 1
  1. 1.Department of Computer ScienceUniversity of California, Santa BarbaraSanta Barbara

Personalised recommendations