On Concurrency Control in Sliding Window Queries over Data Streams

  • Lukasz Golab
  • Kumar Gaurav Bijay
  • M. Tamer Özsu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3896)


Data stream systems execute a dynamic workload of long-running and one-time queries, with the streaming inputs typically bounded by sliding windows. For efficiency, windows may be advanced periodically by replacing the oldest part of the window with a batch of new data. Existing work on stream processing assumes that a window cannot be advanced while it is being accessed by a query. In this paper, we argue that concurrent processing of queries (reads) and window-slides (writes) is required by data stream systems in order to allow prioritized query scheduling and improve the freshness of answers. We prove that the traditional notion of conflict serializability is insufficient in this context and define stronger isolation levels that restrict the allowed serialization orders. We also design and experimentally evaluate a transaction scheduler that efficiently enforces the new isolation levels.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arasu, A., Widom, J.: Resource sharing in continuous sliding-window aggregates. In: Proc. VLDB Conference, pp. 336–347 (2004)Google Scholar
  2. 2.
    Chen, J., DeWitt, D., Tian, F., Wang, Y.: NiagaraCQ: A scalable continuous query system for Internet databases. In: Proc. SIGMOD Conference, pp. 379–390 (2000)Google Scholar
  3. 3.
    Golab, L., Garg, S., Özsu, M.T.: On indexing sliding windows over online data streams. In: Bertino, E., Christodoulakis, S., Plexousakis, D., Christophides, V., Koubarakis, M., Böhm, K., Ferrari, E. (eds.) EDBT 2004. LNCS, vol. 2992, pp. 712–729. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. 4.
    Shivakumar, N., García-Molina, H.: Wave-indices: indexing evolving databases. In: Proc. SIGMOD Conference, pp. 381–392 (1997)Google Scholar
  5. 5.
    Zhu, Y., Shasha, D.: StatStream: Statistical monitoring of thousands of data streams in real time. In: Proc. VLDB Conference, pp. 358–369 (2002)Google Scholar
  6. 6.
    Abadi, D., et al.: Aurora: A new model and architecture for data stream management. VLDB Journal 12, 120–139 (2003)CrossRefGoogle Scholar
  7. 7.
    Arasu, A., Babu, S., Widom, J.: The CQL continuous query language: Semantic foundations and query execution. VLDB Journal 14 (2005)(to appear)Google Scholar
  8. 8.
    Chandrasekaran, S., et al.: TelegraphCQ: Continuous dataflow processing for an uncertain world. In: Proc. CIDR Conference, pp. 269–280 (2003)Google Scholar
  9. 9.
    Golab, L., Özsu, M.T.: Update-pattern aware modeling and processing of continuous queries. In: Proc. SIGMOD Conference, pp. 658–669 (2005)Google Scholar
  10. 10.
    Golab, L., Bijay, K.G., Özsu, M.T.: On concurrency control in sliding window queries over data streams. University of Waterloo Technical Report CS-2005-28., Available at
  11. 11.
    Cormode, G., Muthukrishnan, S.M.: An improved data stream summary: The count-min sketch and its applications. In: Farach-Colton, M. (ed.) LATIN 2004. LNCS, vol. 2976, pp. 29–38. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Flajolet, P., Martin, G.N.: Probabilistic counting. In: Proc. FOCS Conference, pp. 76–82 (1983)Google Scholar
  13. 13.
    Bernstein, P., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery in Database Systems. Addison-Wesley, Reading (1987)Google Scholar
  14. 14.
    Belady, L.: A study of replacement algorithms for virtual storage computers. IBM Syst. J. 5, 78–101 (1966)CrossRefGoogle Scholar
  15. 15.
    Cormode, G., et al.: Holistic UDAFs at streaming speeds. In: Proc. SIGMOD Conference, pp. 35–46 (2004)Google Scholar
  16. 16.
    Cranor, C., Johnson, T., Spatscheck, O., Shkapenyuk, V.: Gigascope: High performance network monitoring with an SQL interface. In: Proc. SIGMOD Conference, pp. 647–651 (2003)Google Scholar
  17. 17.
    Chandrasekaran, S., Franklin, M.: PSoup: a system for streaming queries over streaming data. VLDB Journal 12, 140–156 (2003)CrossRefGoogle Scholar
  18. 18.
    Golab, L., Özsu, M.T.: Processing sliding window multi-joins in continuous queries over data streams. In: Proc. VLDB Conference, pp. 500–511 (2003)Google Scholar
  19. 19.
    Weikum, G., Vossen, G.: Transactional Information Systems. In: Theory, Algorithms, and the Practice of Concurrency Control and Recovery. Morgan Kauffman, San Francisco (2002)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Lukasz Golab
    • 1
  • Kumar Gaurav Bijay
    • 2
  • M. Tamer Özsu
    • 1
  1. 1.School of Computer ScienceUniversity of WaterlooCanada
  2. 2.Department of Computer Science and EngineeringIIT BombayIndia

Personalised recommendations