From Analysis to Interactive Exploration: Building Visual Hierarchies from OLAP Cubes

  • Svetlana Vinnik
  • Florian Mansmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3896)


We present a novel framework for comprehensive exploration of OLAP data by means of user-defined dynamic hierarchical visualizations. The multidimensional data model behind the OLAP architecture is particularly suitable for sophisticated analysis of large data volumes. However, the ultimate benefit of applying OLAP technology depends on the “intelligence” and usability of visual tools available to end-users.

The explorative framework of our proposed interface consists of the navigation structure, a selection of hierarchical visualization techniques, and a set of interaction features. The navigation interface allows users to pursue arbitrary disaggregation paths within single data cubes and, more importantly, across multiple cubes. In the course of interaction, the navigation view adapts itself to display the chosen path and the options valid in the current context. Special effort has been invested in handling non-trivial relationships (e.g., mixed granularity) within hierarchical dimensions in a way transparent to the user.

We propose a visual structure called Enhanced Decomposition Tree to to be used along with popular “state-of-the-art” hierarchical visualization techniques. Each level of the tree is produced by a disaggregation step, whereas the nodes display the specified subset of measures, either as plain numbers or as an embedded chart. The proposed technique enables a stepwise descent towards the desired level of detail while preserving the history of the interaction. Aesthetic hierarchical layout of the node-link tree ensures clear structural separation between the analyzed values embedded in the nodes and their dimensional characteristics which label the links. Our framework provides an intuitive and powerful interface for exploring complex multidimensional data sets.


Order Amount Decomposition Tree Multidimensional Data Split Dimension Interactive Exploration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Business Objects, S.A.: BusinessObjects OLAP Intelligence (2005), [Online].Available:
  2. 2.
    Chabot, C., Hanrahan, P., Stolte, C., Brown, K., Walker, T., Johnson, E., Mackinlay, J.: Tableau software (2005), [Online]. Available:
  3. 3.
    Chaudhuri, S., Dayal, U., Ganti, V.: Database technology for decision support systems. Computer 34(12), 48–55 (2001)CrossRefGoogle Scholar
  4. 4.
    International, C.N.S.: DataWarehouse Explorer (2005), [Online]. Available:
  5. 5.
    Codd, E.F., Codd, S.B., Salley, C.T.: Providing OLAP (on-line analytical processing) to user-analysts: An IT mandate. Technical report, E.F.Codd & Associates (1993)Google Scholar
  6. 6.
    Cognos Software Corporation, “Cognos PowerPlay: Overview–OLAP Software,” (2005), [Online]. Available:
  7. 7.
    Eick, S.G.: Visualizing multi-dimensional data. SIGGRAPH Comput. Graph. 34(1), 61–67 (2000)CrossRefMathSciNetGoogle Scholar
  8. 8.
    Herman, I., Melançon, G., Marshall, M.S.: Graph visualization and navigation in information visualization: A survey. IEEE Transactions on Visualization and Computer Graphics 6(1), 24–43 (2000)CrossRefGoogle Scholar
  9. 9.
    Keim, D.A.: Information visualization and visual data mining. IEEE Transactions on Visualization and Computer Graphics 8(1), 1–8 (2002)CrossRefGoogle Scholar
  10. 10.
    Microsoft, “Microsoft Excel –User’s Guide,” Redmond, Wash (1995)Google Scholar
  11. 11.
    Nguyen, Q.V., Huang, M.L.: Space-optimized tree: a connection+enclosure approach for the visualization of large hierarchies. Information Visualization 2(1), 3–15 (2003)CrossRefGoogle Scholar
  12. 12.
    Niemi, T., Nummenmaa, J., Thanisch, P.: Logical multidimensional database design for ragged and unbalanced aggregation. In: Design and Management of Data Warehouses, p. 7 (2001)Google Scholar
  13. 13.
    Tan, V.K.P.-N., Steinbach, M.: Introduction to Data Mining: Concepts and Techniques. Addison Wesley, Reading (2006)Google Scholar
  14. 14.
    Pedersen, T.B., Jensen, C.S.: Multidimensional database technology. IEEE Computer 34(12), 40–46 (2001)Google Scholar
  15. 15.
    Pedersen, T.B., Jensen, C.S., Dyreson, C.E.: Extending practical preaggregation in on-line analytical processing. The VLDB Journal, 663–674 (1999)Google Scholar
  16. 16.
    ProClarity, “Business management software overview,” (2005), [Online]. Available:
  17. 17.
    Reingold, E., Tilford, J.: Tidier drawing of trees. IEEE Transactions on Software Engineering 7, 223–228 (1981)CrossRefGoogle Scholar
  18. 18.
    Richard, R.D.B., Wilson, M.: Dynamic hierarchy specification and visualization. In: Proceedings of the 1999 IEEE Symposium on Information Visualization, p. 65 (1999)Google Scholar
  19. 19.
    Shneiderman, B.: Tree visualization with tree-maps: 2-d space-filling approach. ACM Trans. Graph. 11(1), 92–99 (1992)zbMATHCrossRefGoogle Scholar
  20. 20.
    Stolte, C., Tang, D., Hanrahan, P.: Polaris: A system for query, analysis, and visualization of multidimensional relational databases. IEEE Transactions on Visualization and Computer Graphics 8(1), 52–65 (2002)CrossRefGoogle Scholar
  21. 21.
    XMLA, “Report Portal: Zero-footprint olap web client solution,” (2005), [Online]. Available:

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Svetlana Vinnik
    • 1
  • Florian Mansmann
    • 1
  1. 1.University of KonstanzKonstanzGermany

Personalised recommendations