Online, Non-blocking Relational Schema Changes

  • Jørgen Løland
  • Svein-Olaf Hvasshovd
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3896)

Abstract

A database schema should be able to evolve to reflect changes to the universe it represents. In existing systems, user transactions get blocked during complex schema transformations. Blocking user transactions is not an option in systems with very high availability requirements, like operational telecom databases. A non-blocking transformation framework is therefore needed.

A method for performing non-blocking full outer join and split transformations, suitable for highly available databases, is presented in this paper. Only the log is used for change propagation, and this makes the method easy to integrate into existing DBMSs. Because the involved tables are not locked, the transformation may run as a low priority background process. As a result, the transformation has little impact on concurrent user transactions.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baylis, R., Rich, K.: Oracle9i Database Administrator’s Guide Release 2 (9.2) (2002)Google Scholar
  2. 2.
    Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Control and Recovery in Database Systems, 1st edn. Addison-Weslay Publishing Company, London (1987)Google Scholar
  3. 3.
    Blakeley, J.A., Larson, P.-A., Tompa, F.W.: Efficiently updating materialized views. In: Proc of the 1986 ACM SIGMOD Intl. Conference on Management of Data, pp. 61–71 (1986)Google Scholar
  4. 4.
    Bratsberg, S.E., Hvasshovd, S.-O., Torbjørnsen, Ø.: Parallel solutions in ClustRa. IEEE Data Eng. Bull. 20(2), 13–20 (1997)Google Scholar
  5. 5.
    Colby, L.S., Griffin, T., Libkin, L., Mumick, I.S., Trickey, H.: Algorithms for deferred view maintenance. In: Proc of the 1996 ACM SIGMOD Intl. Conference on Management of Data, pp. 469–480. ACM Press, New York (1996)CrossRefGoogle Scholar
  6. 6.
    Crus, R.A.: Data Recovery in IBM Database 2. IBM Systems Journal 23(2), 178 (1984)CrossRefGoogle Scholar
  7. 7.
    Garcia-Molina, H., Salem, K.: Sagas. In: Proc of the 1987 ACM SIGMOD Intl. Conference on Management of Data, pp. 249–259. ACM Press, New York (1987)CrossRefGoogle Scholar
  8. 8.
    Griffin, T., Kumar, B.: Algebraic change propagation for semijoin and outerjoin queries. SIGMOD Rec. 27(3), 22–27 (1998)CrossRefGoogle Scholar
  9. 9.
    Gupta, A., Katiyar, D., Mumick, I.S.: Counting solutions to the view maintenance problem. In: Workshop on Deductive Databases, JICSLP, pp. 185–194 (1992)Google Scholar
  10. 10.
    Gupta, A., Mumick, I.S., Subrahmanian, V.S.: Maintaining views incrementally. In: Proc of the 1993 ACM SIGMOD Intl. conference on Management of data, pp. 157–166. ACM Press, New York (1993)CrossRefGoogle Scholar
  11. 11.
    Gupta, H., Mumick, I.S.: Incremental maintenance of aggregate and outerjoin expressions (2005)Google Scholar
  12. 12.
    Hvasshovd, S.-O.: Recovery in Parallel Database Systems., 2nd edn., Verlag Vieweg (1999)Google Scholar
  13. 13.
    Hvasshovd, S.-O., Sæter, T., Torbjørnsen, Ø., Moe, P., Risnes, O.: A continously available and highly scalable transaction server: Design experience from the HypRa project. In: Proc of the 4th International Workshop on High Performance Transaction Systems (1991)Google Scholar
  14. 14.
    IBM. IBM DB2 Universial Database Administration Guide: Implementation, 8th version, IBMGoogle Scholar
  15. 15.
    IBM. IBM DB2 Universial Database SQL Reference, 8th edn., vol. 2. IBMGoogle Scholar
  16. 16.
    Kawaguchi, A., Lieuwen, D.F., Mumick, I.S., Quass, D., Ross, K.A.: Concurrency control theory for deferred materialized views. In: Proc of the International Conference on Database Theory, pp. 306–320 (1997)Google Scholar
  17. 17.
    Korth, H.F.: Locking primitives in a database system. Journal of the ACM 30(1), 55–79 (1983)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Marche, S.: Measuring the stability of data. European Journal of Information Systems 2(1), 37–47 (1993)CrossRefGoogle Scholar
  19. 19.
    Microsoft Corporation. Microsoft sql server 2000 books online, version 8.00.002 (sp3) (2000), published 17.01.2003Google Scholar
  20. 20.
    Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H., Schwarz, P.: Aries: a transaction recovery method supporting fine- granularity locking and partial rollbacks using write-ahead logging. ACM Transactions on Database Systems 17(1), 94–162 (1992)CrossRefGoogle Scholar
  21. 21.
    Qian, X., Wiederhold, G.: Incremental recomputation of active relational expressions. Knowledge and Data Engineering 3(3), 337–341 (1991)CrossRefGoogle Scholar
  22. 22.
    Quass, D., Gupta, A., Mumick, I.S., Widom, J.: Making views self-maintainable for data warehousing. In: Proc of the 4th International Conference on Parallel and Distributed Information Systems, USA, pp. 158–169. IEEE Computer Society, Los Alamitos (1996)CrossRefGoogle Scholar
  23. 23.
    Ronström, M.: On-line schema update for a telecom database. In: Proc of the 16th International Conference on Data Engineering (2000)Google Scholar
  24. 24.
    Shmueli, O., Itai, A.: Maintenance of views. In: Proc of the 1984 ACM SIGMOD Intl. Conference on Management of Data, pp. 240–255. ACM Press, New York (1984)CrossRefGoogle Scholar
  25. 25.
    Sjøberg, D.: Quantifying schema evolution. Information and Software Technology 35(1), 35–44 (1993)CrossRefGoogle Scholar
  26. 26.
    Widenius, M., Axmark, D.: MySQL Reference Manual, 1st edn. O’Reilly & Associates, Sebastopol (2002)Google Scholar
  27. 27.
    Zhuge, Y., Garcia-Molina, H., Hammer, J., Widom, J.: View maintenance in a warehousing environment. In: Proc of the 1995 ACM SIGMOD Intl. conference on Management of data, pp. 316–327. ACM Press, New York (1995)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Jørgen Løland
    • 1
  • Svein-Olaf Hvasshovd
    • 1
  1. 1.Dept. of Computer ScienceNTNUTrondheimNorway

Personalised recommendations