Replication, Load Balancing and Efficient Range Query Processing in DHTs

  • Theoni Pitoura
  • Nikos Ntarmos
  • Peter Triantafillou
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3896)

Abstract

We consider the conflicting problems of ensuring data-access load balancing and efficiently processing range queries on peer-to-peer data networks maintained over Distributed Hash Tables (DHTs). Placing consecutive data values in neighboring peers is frequently used in DHTs since it accelerates range query processing. However, such a placement is highly susceptible to load imbalances, which are preferably handled by replicating data (since replication also introduces fault tolerance benefits). In this paper, we present HotRoD, a DHT-based architecture that deals effectively with this combined problem through the use of a novel locality-preserving hash function, and a tunable data replication mechanism which allows trading off replication costs for fair load distribution. Our detailed experimentation study shows strong gains in both range query processing efficiency and data-access load balancing, with low replication overhead. To our knowledge, this is the first work that concurrently addresses the two conflicting problems using data replication.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aberer, K.: P-Grid: A self-organizing access structure for P2P information systems. In: Batini, C., Giunchiglia, F., Giorgini, P., Mecella, M. (eds.) CoopIS 2001. LNCS, vol. 2172, p. 179. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  2. 2.
    Andrzejak, A., Xu, Z.: Scalable, efficient range queries for Grid information services. In: Proc. of P2P (2002)Google Scholar
  3. 3.
    Aspnes, J., Kirsch, J., Krishnamurthy, A.: Load balancing and locality in range-queriable data structures. In: Proc. of PODC (2004)Google Scholar
  4. 4.
    Aspnes, J., Shah, G.: Skip graphs. In: ACM-SIAM Symposium on Discrete Algorithms (2003)Google Scholar
  5. 5.
    Bharambe, A., Agrawal, M., Seshan, S.: Mercury: Supporting scalable multi-attribute range queries. In: Proc. of SIGCOMM (2004)Google Scholar
  6. 6.
    Damgaard, C., Weiner, J.: Describing inequality in plant size or fecundity. Ecology 81, 1139–1142 (2000)CrossRefGoogle Scholar
  7. 7.
    Ganesan, P., Bawa, M., Garcia-Molina, H.: Online balancing of range-partitioned data with applications to peer-to-peer systems. In: Proc. of VLDB (2004)Google Scholar
  8. 8.
    Gopalakrishnan, V., Silaghi, B., Bhattacharjee, B., Keleher, P.: Adaptive replication in peer-to-peer systems. In: Proc. of ICDCS (2004)Google Scholar
  9. 9.
    Gupta, A., Agrawal, D., Abbadi, A.E.: Approximate range selection queries in peer-topeer systems. In: Proc. of CIDR (2003)Google Scholar
  10. 10.
    Harvey, N., et al.: SkipNet: A scalable overlay network with practical locality preserving properties. In: Proc.of 4th USENIX Symp. on Internet Technologies and Systems (2003)Google Scholar
  11. 11.
    Jagadish, H.V., Ooi, B.C., Vu, Q.H.: BATON: A balanced tree structure for peer-to-peer networks. In: Proc. of VLDB (2005)Google Scholar
  12. 12.
    Karger, D., et al.: Consistent hashing and random trees: distributed caching protocols for relieving hot spots on the World Wide Web. In: Proc. ACM STOC (1997)Google Scholar
  13. 13.
    Mondal, A., Goda, K., Kitsuregawa, M.: Effective load-balancing via migration and replication in spatial grids. In: Mařík, V., Štěpánková, O., Retschitzegger, W. (eds.) DEXA 2003. LNCS, vol. 2736, pp. 202–211. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Ntarmos, N., Pitoura, T., Triantafillou, P.: Range query optimization leveraging peer heterogeneity in DHT data networks. In: Moro, G., Bergamaschi, S., Joseph, S., Morin, J.-H., Ouksel, A.M. (eds.) DBISP2P 2005 and DBISP2P 2006. LNCS, vol. 4125, pp. 111–122. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Pitoura, T., Ntarmos, N., Triantafillou, P.: HotRoD: Load Balancing and Efficient Range Query Processing in Peer-to-Peer Data Networks. Technical Report No. T.R.2004/12/05, RACTI (2004)Google Scholar
  16. 16.
    Ramabhadran, S., Ratnasamy, S., Hellerstein, J., Shenker, S.: Brief Announcement: Prefix Hash Tree. In: Proc. of PODC (2004)Google Scholar
  17. 17.
    Ratnasamy, S., Francis, P., Handley, M., Karp, R., Shenker, S.: A scalable contentaddressable network. In: Proc. ACM SIGCOMM (2001)Google Scholar
  18. 18.
    Rowstron, A., Druschel, P.: Pastry: Scalable, decentralized object location and routing for large-scale peer-to-peer systems. In: Guerraoui, R. (ed.) Middleware 2001. LNCS, vol. 2218, p. 329. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  19. 19.
    Sahin, O.D., Gupta, A., Agrawal, D., Abbadi, A.E.: A peer-to-peer framework for caching range queries. In: Proc. of ICDE (2004)Google Scholar
  20. 20.
    Saroiu, S., Gummadi, P., Gribble, S.: A measurement study of peer-to-peer file sharing systems. In: Proc. of MMCN (2002)Google Scholar
  21. 21.
    Stoica, I., Morris, R., Karger, D., Kaashoek, M.F., Balakrishnan, H.: Chord: A scalable peer-to-peer lookup service for internet applications. In: Proc. of SIGCOMM (2001)Google Scholar
  22. 22.
    Triantafillou, P., Pitoura, T.: Towards a unifying framework for complex query processing over structured peer-to-peer data networks. In: Aberer, K., Koubarakis, M., Kalogeraki, V. (eds.) VLDB 2003. LNCS, vol. 2944, pp. 169–183. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  23. 23.
    Wu, K., Yu, P.S.: Replication for load balancing and hot-spot relief on proxy web caches with hash routing. Distributed and Parallel Databases 13(2), 203–220 (2003)MATHCrossRefGoogle Scholar
  24. 24.
    Zhao, Y.B., Kubiatowitcz, J., Joseph, A.: Tapestry: An infrastructure for fault-tolerant wide-area location and routing. Technical Report UCB/CSD-01-1141 (2001)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Theoni Pitoura
    • 1
  • Nikos Ntarmos
    • 1
  • Peter Triantafillou
    • 1
  1. 1.Research Academic Computer Technology Institute, and Computer Engineering, and Informatics DepartmentUniversity of PatrasGreece

Personalised recommendations