On Promise Problems: A Survey

  • Oded Goldreich
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3895)

Abstract

The notion of promise problems was introduced and initially studied by Even, Selman and Yacobi (Inform. and Control, Vol. 61, pages 159–173, 1984). In this article we survey some of the applications that this notion has found in the twenty years that elapsed. These include the notion of “unique solutions”, the formulation of “gap problems” as capturing various approximation tasks, the identification of complete problems (especially for the class \({\cal SZK}\)), the indication of separations between certain computational resources, and the enabling of presentations that better distill the essence of various proofs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adleman, L.: Two theorems on random polynomial-time. In: 19th FOCS, pp. 75–83 (1978)Google Scholar
  2. 2.
    Aharonov, D., Regev, O.: Lattice problems in \(\mathcal{NP} \cap\)co\(\mathcal{NP}\). In: 45th FOCS, pp. 362–371 (2004)Google Scholar
  3. 3.
    Aiello, W., Håstad, J.: Statistical zero-knowledge languages can be recognized in two rounds. JCSS 42(3), 327–345 (1991); Preliminary version in 28th FOCS (1987)Google Scholar
  4. 4.
    Alon, N., Boppana, R.: The monotone circuit complexity of Boolean functions. Combinatorica 7(1), 1–22 (1987)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Alon, N., Shapira, A.: A Separation Theorem in Property Testing. Unpublished manuscript (2004)Google Scholar
  6. 6.
    Barak, B.: A Probabilistic-Time Hierarchy Theorem for “Slightly Nonuniform” Algorithms. In: Rolim, J.D.P., Vadhan, S.P. (eds.) RANDOM 2002. LNCS, vol. 2483, pp. 194–208. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  7. 7.
    Bellare, M., Goldreich, O., Sudan, M.: Free Bits, PCPs and Non- Approximability – Towards Tight Results. SICOMP 27(3), 804–915 (1998); Extended abstract in 36th FOCS, pp. 422–431 (1995)Google Scholar
  8. 8.
    Bennett, C.H., Brassard, G., Robert, J.M.: Privacy Amplification by Public Discussion. In: RGU 1974, vol. 17, pp. 210–229 (1988), Preliminary version in Williams, H.C. (ed.): CRYPTO 1985. LNCS, vol. 218, pp. 468–476. Springer, Heidelberg (1986) (titled “How to Reduce your Enemy’s Information”)Google Scholar
  9. 9.
    Ben-Sasson, E., Sudan, M., Vadhan, S., Wigderson, A.: Randomness-efficient low degree tests and short PCPs via epsilon-biased sets. In: 35th STOC, pp. 612–621 (2003)Google Scholar
  10. 10.
    Buhrman, H., Fortnow, L.: One-sided versus two-sided randomness. In: Proceedings of the 16th Symposium on Theoretical Aspects of Computer Science. LNCS, Springer, Heidelberg (1999)Google Scholar
  11. 11.
    Cai, J., Nerurkar, A.: A note on the non-NP-hardness of approximate lattice problems under general Cook reductions. In: IPL, vol. 76, pp. 61–66 (2000). See comment in [21]Google Scholar
  12. 12.
    Carter, L., Wegman, M.: Universal Hash Functions. JCSS 18, 143–154 (1979)MATHMathSciNetGoogle Scholar
  13. 13.
    Even, S., Selman, A.L., Yacobi, Y.: The Complexity of Promise Problems with Applications to Public-Key Cryptography. Inform. and Control 61, 159–173 (1984)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Even, S., Yacobi, Y.: Cryptography and NP-Completeness. In: de Bakker, J.W., van Leeuwen, J. (eds.) ICALP 1980. LNCS, vol. 85, pp. 195–207. Springer, Heidelberg (1980); See [13]Google Scholar
  15. 15.
    Fortnow, L.: The complexity of perfect zero-knowledge. In: Micali, S. (ed.) Advances in Computing Research, vol. 5, pp. 327–343. JAC Press Inc (1989); Preliminary version in 19th STOC, (1987)Google Scholar
  16. 16.
    Fortnow, L., Santhanam, R.: Hierarchy theorems for probabilistic polynomial time. In: 45th FOCS, pp. 316–324 (2004)Google Scholar
  17. 17.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York (1979)MATHGoogle Scholar
  18. 18.
    Glasser, C., Selman, A.L., Zhang, L.: Survey of Disjoint NP-Pairs and Relations to Propositional Proof Systems. In: Goldreich, O., Rosenberg, A.L., Selman, A.L. (eds.) Theoretical Computer Science. LNCS, vol. 3895, pp. 241–253. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  19. 19.
    Goldreich, O.: Foundation of Cryptography – Basic Tools. Cambridge University Press, Cambridge (2001)Google Scholar
  20. 20.
    Goldreich, O.: Zero-Knowledge twenty years after its invention. Quaderni di Matematica, vol. 13 (Complexity of Computations and Proofs, ed. J. Krajicek), pp. 249–304 (2004), Available from http://www.wisdom.weizmann.ac.il/~oded/zk-tut02.html
  21. 21.
    Goldreich, O.: Comments regarding [22] at web-page http://www.wisdo.weizmann.ac.il/~oded/p_lp.htm
  22. 22.
    Goldreich, O., Goldwasser, S.: On the Limits of Non-Approximability of Lattice Problems. JCSS 60, 540–563 (2000); Extended abstract in 30th STOC (1998)Google Scholar
  23. 23.
    Goldreich, O., Goldwasser, S., Ron, D.: Property testing and its connection to learning and approximation. Journal of the ACM, 653–750 (1998); Extended abstract in 37th FOCS (1996)Google Scholar
  24. 24.
    Goldreich, O., Kushilevitz, E.: A Perfect Zero-Knowledge Proof for a Decision Problem Equivalent to Discrete Logarithm. Jour. of Crypto. 6(2), 97–116 (1993); Extended abstract in proceedings of Crypto 1988Google Scholar
  25. 25.
    Goldreich, O., Micali, S., Wigderson, A.: Proofs that Yield Nothing but their Validity or All Languages in NP Have Zero-Knowledge Proof Systems. JACM 38(1), 691–729 (1991); Preliminary version in 27th FOCS (1986)Google Scholar
  26. 26.
    Goldreich, O., Ron, D.: Property testing in bounded degree graphs. Algorithmica 302–343 (2002); Extended abstract in 29th STOC (1997)Google Scholar
  27. 27.
    Goldreich, O., Ron, D.: A sublinear bipartite tester for bounded degree graphs. Combinatorica 19(3), 335–373 (1999); Extended abstract in 30th STOC (1998)Google Scholar
  28. 28.
    Goldreich, O., Sahai, A., Vadhan, S.: Honest-Verifier Statistical Zero- Knowledge equals general Statistical Zero-Knowledge. In: 30th STOC, pp. 399–408 (1998)Google Scholar
  29. 29.
    Goldreich, O., Sahai, A., Vadhan, S.P.: Can Statistical Zero-Knowledge be Made Non-Interactive? or On the Relationship of SZK and NISZK. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 467–484. Springer, Heidelberg (1999)Google Scholar
  30. 30.
    Goldreich, O., Sudan, M.: Locally Testable Codes and PCPs of Almost- Linear Length. Preliminary version in 43rd FOCS (2002), ECCC Report TR02- 050 (2002)Google Scholar
  31. 31.
    Goldreich, O., Vadhan, S.: Comparing Entropies in Statistical Zero- Knowledge with Applications to the Structure of SZK. In: 14th IEEE Conference on Computational Complexity, pp. 54–73 (1999)Google Scholar
  32. 32.
    Goldreich, O., Zuckerman, D.: Another proof that BPP subseteq PH (and more). ECCC Report TR97-045 (1997)Google Scholar
  33. 33.
    Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexity of Interactive Proof Systems. SIAM Journal on Computing 18, 186–208 (1989); Preliminary version in 17th STOC (1985)Google Scholar
  34. 34.
    Grollmann, J., Selman, A.L.: Complexity Measures for Public-Key Cryptosystems. SIAM Jour. on Comput. 17(2), 309–335 (1988)MATHCrossRefMathSciNetGoogle Scholar
  35. 35.
    Hastad, J.: Clique is hard to approximate within n1 − ε. Acta Mathematica 182, 105–142 (1999); Preliminary versions in 28th STOC (1996) and 37th FOCS (1996)Google Scholar
  36. 36.
    Hastad, J.: Getting optimal in-approximability results. In: 29th STOC, pp. 1–10 (1997) Google Scholar
  37. 37.
    Impagliazzo, R., Levin, L.A., Luby, M.: Pseudorandom Generation from One-Way Functions. In: 21st STOC, pp. 12–24 (1989)Google Scholar
  38. 38.
    Karchmer, M., Wigderson, A.: Monotone Circuits for Connectivity Require Super-logarithmic Depth. SIAM J. Discrete Math. 3(2), 255–265 (1990); Preliminary version in 20th STOC (1988)Google Scholar
  39. 39.
    Knill, E.: Quantum randomness and nondeterminism. quant-ph/9610012 (1996) Google Scholar
  40. 40.
    Kitaev, A.Y., Shen, A.H., Vyalyi, M.N.: Classical and Quantum Computation. Graduate Studies in Mathematics, vol. 47. AMS (2002)Google Scholar
  41. 41.
    Kuhn, T.: The Structure of Scientific Revolution. University of Chicago (1962) Google Scholar
  42. 42.
    Lautemann, C.: BPP and the Polynomial Hierarchy. IPL 17, 215–217 (1983)MATHCrossRefMathSciNetGoogle Scholar
  43. 43.
    Lempel, A.: Cryptography in Transition. Computing Surveys (December 1979) Google Scholar
  44. 44.
    Nisan, N., Wigderson, A.: A note on Rank versus Communication Complexity. Combinatorica 15(4), 557–566 (1995)MATHCrossRefMathSciNetGoogle Scholar
  45. 45.
    Okamoto, T.: On relationships between statistical zero-knowledge proofs. JCSS 60(1), 47–108 (2000); Preliminary version in 28th STOC (1996)Google Scholar
  46. 46.
    Raz, R.: Exponential Separation of Quantum and Classical Communication Complexity. In: 31st STOC, pp. 358–367 (1999)Google Scholar
  47. 47.
    Razborov, A.: Lower bounds for the monotone complexity of some Boolean functions. Doklady Akademii Nauk SSSR 281(4), 798–801 (1985); English translation in Soviet Math. Doklady 31, 354–357 (1985)Google Scholar
  48. 48.
    Razborov, A.: Lower bounds of monotone complexity of the logical permanent function. Matematicheskie Zametki 37(6), 887–900 (1985); English translation in Mathematical Notes of the Academy of Sci. of the USSR 37, 485–493 (1985)Google Scholar
  49. 49.
    Razborov, A.: On the Distributional Complexity of Disjointness. Theoretical Computer Science 106, 385–390 (1992)MATHCrossRefMathSciNetGoogle Scholar
  50. 50.
    Rubinfeld, R., Sudan, M.: Robust characterization of polynomials with applications to program testing. SIAM Journal on Computing 25(2), 252–271 (1996)MATHCrossRefMathSciNetGoogle Scholar
  51. 51.
    Sahai, A., Vadhan, S.: A complete problem for Statistical Zero-Knowledge. Journal of the ACM 50(2), 196–249 (1997); Preliminary version in 38th FOCS (1997)Google Scholar
  52. 52.
    Sipser, M.: A Complexity Theoretic Approach to Randomness. In: 15th STOC, pp. 330–335 (1983)Google Scholar
  53. 53.
    Stockmeyer, L.: On Approximation Algorithms for #P. SIAM Journal on Computing 14(4), 849–861 (1985); Preliminary version in 15th STOC, pp. 118–126 (1983)Google Scholar
  54. 54.
    Tardos, E.: The gap between monotone and non-monotone circuit complexity is exponential. Combinatorica 8(1), 141–142 (1988)MATHCrossRefMathSciNetGoogle Scholar
  55. 55.
    Vadhan, S.: A Study of Statistical Zero-Knowledge Proofs. PhD Thesis, Department of Mathematics, MIT (1999), Available from http://www.eecs.harvard.edu/~salil/papers/phdthesis-abs.html
  56. 56.
    Vadhan, S.: An Unconditional Study of Computational Zero Knowledge. In: 45th FOCS, pp. 176–185 (2004)Google Scholar
  57. 57.
    Vadhan, S.: Using promise problems to define modified complexity classes. Email to the author (January 24, 2005)Google Scholar
  58. 58.
    Valiant, L.G., Vazirani, V.V.: NP is as Easy as Detecting Unique Solutions. Theoretical Computer Science 47(1), 85–93 (1986); Preliminary version in 17th STOC, pp. 458–463 (1985)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Oded Goldreich
    • 1
  1. 1.Department of Computer ScienceWeizmann Institute of ScienceRehovotIsrael

Personalised recommendations