Advertisement

Constructions of Approximately Mutually Unbiased Bases

  • Igor E. Shparlinski
  • Arne Winterhof
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3887)

Abstract

We construct systems of bases of \({\mathbb C}^{n}\) which are mutually almost orthogonal and which might turn out to be useful for quantum computation. Our constructions are based on bounds of classical exponential sums and exponential sums over elliptic curves.

Keywords

Elliptic Curve Quantum Computation Elliptic Curf Abelian Variety Prime Power 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aschbacher, M., Childs, A.M., Wocjan, P.: The limitations of nice mutually unbiased bases (preprint, 2004), available from, http://arxiv.org/abs/quant-ph/0412066
  2. 2.
    Bandyopadhyay, S., Boykin, P.O., Roychowdhury, V., Vatan, F.: A new proof for the existence of mutually unbiased bases. Algorithmica 34, 512–528 (2001)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Bengtsson, I., Ericsson, A.: Mutually unbiased bases and the complementarity polytope. Open Syst. Inform. Dynamics 12, 107–120 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Birch, B.J.: How the number of points of an elliptic curve over a fixed prime field varies. J. Lond. Math. Soc. 43, 57–60 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Boykin, P.O., Sitharam, M., Tiep, P.H., Wocjan, P.: Mutually unbiased bases and orthogonal decompositions of Lie algebras (preprint, 2005), available from, http://arxiv.org/abs/quant-ph/0506089
  6. 6.
    Cochrane, T., Peral, J.C.: An asymptotic formula for a trigonometric sum of Vinogradov. J. Number Theory 91, 1–19 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cramer, H.: On the order of magnitude of the difference between consecutive prime numbers. Acta Arith. 2, 23–46 (1936)CrossRefzbMATHGoogle Scholar
  8. 8.
    Deuring, M.: Die Typen der Multiplikatorenringe elliptischer Funktionenkörper. Abh. Math. Sem. Hansischen Univ. 14, 197–272 (1941)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chaturvedi, S.: Aspects of mutually unbiased bases in odd-prime-power dimensions. Phys. Rev. A 65, 044301 (2002)Google Scholar
  10. 10.
    Klappenecker, A., Rötteler, M.: Constructions of mutually unbiased bases. In: Mullen, G.L., Poli, A., Stichtenoth, H. (eds.) Fq7 2003. LNCS, vol. 2948, pp. 137–144. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Klappenecker, A., Rötteler, M., Shparlinski, I., Winterhof, A.: On approximately symmetric informationally complete positive operator-valued measures and related systems of quantum states. J. Math. Physics 46, 082104 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kohel, D.R., Shparlinski, I.E.: Exponential sums and group generators for elliptic curves over finite fields. In: Bosma, W. (ed.) ANTS 2000. LNCS, vol. 1838, pp. 395–404. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  13. 13.
    Peck, A.S.: Differences between consecutive primes. Proc. London Math. Soc. 76, 33–69 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Planat, M., Rosu, H.: Mutually unbiased bases, phase uncertainties and Gauss sums. European Physical J. D. 36, 133–139 (2005)CrossRefGoogle Scholar
  15. 15.
    Planat, M., Saniga, M.: Ovals in finite projective planes and complete sets of mutually unbiased bases. Intern. J. of Modern Physics B (to appear)Google Scholar
  16. 16.
    Schoof, R.: Nonsingular plane cubic curves over finite fields. J. Combin. Theory, Ser. A 47, 183–211 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Silverman, J.H.: The arithmetic of elliptic curves. Springer, Berlin (1995)Google Scholar
  18. 18.
    Waterhouse, W.C.: Abelian varieties over finite fields. Ann. Sci. Ecole Norm. Sup. 2, 521–560 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Wocjan, P., Beth, T.: New construction of mutually unbiased bases in square dimensions. Quantum Infor. and Comp. 5, 93–101 (2005)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Igor E. Shparlinski
    • 1
  • Arne Winterhof
    • 2
  1. 1.Department of ComputingMacquarie UniversitySydneyAustralia
  2. 2.Johann Radon Institute for Computational and Applied MathematicsAustrian Academy of SciencesLinzAustria

Personalised recommendations