Advertisement

Approximate Sorting

  • Joachim Giesen
  • Eva Schuberth
  • Miloš Stojaković
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3887)

Abstract

We show that any comparison based, randomized algorithm to approximate any given ranking of n items within expected Spearman’s footrule distance n 2/ν(n) needs at least n (min{log ν(n), log n} – 6) comparisons in the worst case. This bound is tight up to a constant factor since there exists a deterministic algorithm that shows that 6n(log ν(n)+1) comparisons are always sufficient.

Keywords

Sorting Ranking Spearman’s footrule metric Kendall’s tau metric 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Blum, M., Floyd, R.W., Pratt, V., Rivest, R.L., Tarjan, R.E.: Linear time bounds for median computations. In: STOC 1972: Proceedings of the fourth annual ACM symposium on Theory of computing, pp. 119–124. ACM Press, New York (1972)CrossRefGoogle Scholar
  2. 2.
    Chazelle, B.: The soft heap: An approximate priority queue with optimal error rate. Journal of the ACM 47(6), 1012–1027 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. The MIT Press/McGraw-Hill (1990)Google Scholar
  4. 4.
    Diaconis, P., Graham, R.L.: Spearman’s footrule as a measure of disarray. Journal of the Royal Statistical Society 39(2), 262–268 (1977)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Hwang, H.K., Yang, B.Y., Yeh, Y.N.: Presorting algorithms: an average-case point of view. Theoretical Computer Science 242(1-2), 29–40 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Kahn, J., Kim, J.H.: Entropy and sorting. In: STOC 1992: Proceedings of the twenty-fourth annual ACM symposium on Theory of computing, pp. 178–187. ACM Press, New York (1992)CrossRefGoogle Scholar
  7. 7.
    Knuth, D.E.: The Art of Computer Programming, vol. 3. Addison-Wesley, Reading (1973)zbMATHGoogle Scholar
  8. 8.
    Mallows, C.L.: Non-null ranking models. Biometrica 44, 114–130 (1957)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Joachim Giesen
    • 1
  • Eva Schuberth
    • 1
    • 2
  • Miloš Stojaković
    • 1
  1. 1.Institute for Theoretical Computer ScienceETH ZürichZürichSwitzerland
  2. 2.Swiss Federal Laboratories for Materials Testing and ResearchDübendorfSwitzerland

Personalised recommendations