Advertisement

On Minimum k-Modal Partitions of Permutations

  • Gabriele Di Stefano
  • Stefan Krause
  • Marco E. Lübbecke
  • Uwe T. Zimmermann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3887)

Abstract

Partitioning a permutation into a minimum number of monotone subsequences is \({\mathcal NP}\)-hard. We extend this complexity result to minimum partitioning into k-modal subsequences, that is, subsequences having at most k internal extrema. Based on a network flow interpretation we formulate both, the monotone and the k-modal version, as mixed integer programs. This is the first proposal to obtain provably optimal partitions of permutations. From these models we derive an LP rounding algorithm which is a 2-approximation for minimum monotone partitions and a (k+1)-approximation for minimum (upper) k-modal partitions in general; this is the first approximation algorithm for this problem. In computational experiments we see that the rounding algorithm performs even better in practice. For the associated online problem, in which the permutation becomes known to an algorithm sequentially, we derive a logarithmic lower bound on the competitive ratio for minimum monotone partitions, and we analyze two (bin packing) online algorithms. These findings immediately apply to online cocoloring of permutation graphs; they are the first results concerning online algorithms for this graph theoretical interpretation.

Keywords

Mixed integer program approximation algorithm LP rounding online algorithm \({\mathcal NP}\)-hardness monotone sequence k-modal sequence cocoloring 

MSC (2000)

90C11 90C27 05A05 68Q25 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms and Applications. Prentice-Hall, Inc., Englewood Cliffs (1993)zbMATHGoogle Scholar
  2. 2.
    Bar-Yehuda, R., Fogel, S.: Partitioning a sequence into few monotone subsequences. Acta Inform. 35(5), 421–440 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Blasum, U., Bussieck, M.R., Hochstättler, W., Moll, C., Scheel, H.-H., Winter, T.: Scheduling trams in the morning. Math. Methods Oper. Res. 49(1), 137–148 (1999)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Brandstädt, A., Kratsch, D.: On partitions of permutations into increasing and decreasing subsequences. Elektron. Informationsverarb. Kybernet. 22(5/6), 263–273 (1986)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Chung, F.R.K.: On unimodal subsequences. J. Combin. Theory Ser. A 29, 267–279 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Di Stefano, G., Koči, M.L.: A graph theoretical approach to the shunting problem. Electr. Notes Theor. Comput. Sci. 92, 16–33 (2004)CrossRefzbMATHGoogle Scholar
  7. 7.
    Fiat, A., Woeginger, G.J.: Dagstuhl Seminar 1996. LNCS, vol. 1442. Springer, Heidelberg (1998)zbMATHGoogle Scholar
  8. 8.
    Fomin, F.V., Kratsch, D., Novelli, J.-C.: Approximating minimum cocolourings. Inform. Process. Lett. 84(5), 285–290 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Berlin (2003)zbMATHGoogle Scholar
  10. 10.
    Steele, J.M.: Long unimodal subsequences: A problem of F.R.K. Chung. Discrete Math. 33, 223–225 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Steele, J.M.: Variations on the monotone subsequence theme of Erdös and Szekeres. In: Aldous, D., Diaconis, P., Spencer, J., Steele, J.M. (eds.) Discrete Probability and Algorithms, pp. 111–131. Springer, New York (1995)CrossRefGoogle Scholar
  12. 12.
    Wagner, K.: Monotonic coverings of finite sets. Elektron. Informationsverarb. Kybernet. 20(12), 633–639 (1984)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Winter, T., Zimmermann, U.T.: Real-time dispatch of trams in storage yards. Ann. Oper. Res. 96, 287–315 (2000)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Gabriele Di Stefano
    • 1
  • Stefan Krause
    • 2
  • Marco E. Lübbecke
    • 3
  • Uwe T. Zimmermann
    • 2
  1. 1.Dipartimento di Ingegneria ElettricaUniversita dell’AquilaL’AquilaItaly
  2. 2.Institut für Mathematische OptimierungTechnische Universität BraunschweigBraunschweigGermany
  3. 3.Institut für MathematikTechnische Universität BerlinBerlinGermany

Personalised recommendations