In this talk we present several results and open problems having squares, the basic geometric entity, as a common thread. These results have been gathered from various papers; coauthors and precise references are given in the descriptions that follow.


Binary Image Computational Geometry Delaunay Triangulation Geometric Object Hamiltonian Path 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ábrego, B., Arkin, E., Fernández, S., Hurtado, F., Kano, M., Mitchell, J., Urrutia, J.: Matching points with geometric objects. In: Akiyama, J., Kano, M., Tan, X. (eds.) JCDCG 2004. LNCS, vol. 3742, pp. 1–15. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Bereg, S., Mutsanas, N., Wolff, A.: Matching points with rectangles and squares. In: Wiedermann, J., Tel, G., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2006. LNCS, vol. 3831, pp. 177–186. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  3. 3.
    Bose, P., Dujmovic, V., Hurtado, F., Morin, P.: Connectivity- Preserving Transformations of Binary Images (submitted for publication)Google Scholar
  4. 4.
    Dillencourt, M.: Toughness and Delaunay Triangulations. Discrete and Computational Geometry 5(6), 575–601 (1990); Preliminary version in Proc. of the 3rd Ann. Symposium on Computational Geometry, Waterloo, pp. 186–194 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Hurtado, F., Kano, M.: On the translational separation of colored convex objects. In: Proc. XI Encuentros de Geometría Computacional, Santander, pp. 225–230 (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Ferran Hurtado
    • 1
  1. 1.Departament de Matemàtica Aplicada IIUniversitat Politècnica de CatalunyaSpain

Personalised recommendations