Advertisement

Data Structures for Halfplane Proximity Queries and Incremental Voronoi Diagrams

  • Boris Aronov
  • Prosenjit Bose
  • Erik D. Demaine
  • Joachim Gudmundsson
  • John Iacono
  • Stefan Langerman
  • Michiel Smid
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3887)

Abstract

We consider preprocessing a set S of n points in the plane that are in convex position into a data structure supporting queries of the following form: given a point q and a directed line ℓ in the plane, report the point of S that is farthest from (or, alternatively, nearest to) the point q subject to being to the left of line ℓ. We present two data structures for this problem. The first data structure uses O(n 1 + ε) space and preprocessing time, and answers queries in O(21/ε log n) time. The second data structure uses O(n log3 n) space and polynomial preprocessing time, and answers queries in O(log n) time. These are the first solutions to the problem with O(log n) query time and o(n 2) space.

In the process of developing the second data structure, we develop a new representation of nearest-point and farthest-point Voronoi diagrams of points in convex position. This representation supports insertion of new points in counterclockwise order using only O(log n) amortized pointer changes, subject to supporting O(log n)-time point-location queries, even though every such update may make Θ(n) combinatorial changes to the Voronoi diagram. This data structure is the first demonstration that deterministically and incrementally constructed Voronoi diagrams can be maintained in o(n) pointer changes per operation while keeping O(log n)-time point-location queries.

Keywords

Pointer Change Voronoi Diagram Query Point Query Time Binary Search Tree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aggarwal, A., Guibas, L.J., Saxe, J.B., Shor, P.W.: A linear-time algorithm for computing the Voronoi diagram of a convex polygon. Discrete Comput. Geom. 4(6), 591–604 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aronov, B., Bose, P., Demaine, E.D., Gudmundsson, J., Iacono, J., Langerman, S., Smid, M.: Data structures for halfplane proximity queries and incremental voronoi diagrams, arXiv:cs.CG/0512093, http://arXiv.org/abs/cs.CG/0512093
  3. 3.
    Calling, T.: The adventures of Flarb Demingo! (2005), http://www.thecalling.co.za/flarb_pictures.htm, See also the fan site, http://www2.fanscape.com/thecalling/streetteam/flarb.html
  4. 4.
    Chan, T.M.: A dynamic data structure for 3-d convex hulls and 2-d nearest neighbor queries. In: Proc. 17th ACM-SIAM Sympos. Discrete Algorithms (2006)Google Scholar
  5. 5.
    Chiang, Y.-J., Tamassia, R.: Dynamic algorithms in computational geometry. Proc. IEEE 80(9), 1412–1434 (1992)CrossRefGoogle Scholar
  6. 6.
    Cromley, R.G.: Digital Cartography. Prentice-Hall, Englewood Cliffs (August 1991)Google Scholar
  7. 7.
    Daescu, O., Mi, N., Shin, C.-S., Wolff, A.: Farthest-point queries with geometric and combinatorial constraints. Computat. Geom. Theory Appl. (2006) (to appear)Google Scholar
  8. 8.
    de Berg, M., van Kreveld, M., Overmars, M., Schwarzkopf, O.: Computat. Geom. Theory Appl., 2nd edn. Springer, Heidelberg (1999)Google Scholar
  9. 9.
    Dent, B.D.: Cartography: Thematic Map Design, 5th edn. William C. Brown Pub. (July 1998)Google Scholar
  10. 10.
    Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.: Making data structures persistent. Journal of Computer and System Sciences 38(1), 86–124 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Edelsbrunner, H., Guibas, L., Stolfi, J.: Optimal point location in a monotone subdivision. SIAM Journal on Computing 15(2), 317–340 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Eppstein, D.: The farthest point Delaunay triangulation minimizes angles. Computat. Geom. Theory Appl. 1(3), 143–148 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    McMaster, R.B., Shea, K.S.: Generalization in Digital Cartography. Association of American Cartographers, Washington D.C. (1992)Google Scholar
  14. 14.
    Overmars, M.H.: The Design of Dynamic Data Structures. LNCS, vol. 156. Springer, Heidelberg (1983)zbMATHGoogle Scholar
  15. 15.
    Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Springer, Heidelberg (1993)zbMATHGoogle Scholar
  16. 16.
    Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. Journal of Computer and System Sciences 26(3), 362–391 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. Journal of the ACM 32(3), 652–686 (1985)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Boris Aronov
    • 1
  • Prosenjit Bose
    • 2
  • Erik D. Demaine
    • 3
  • Joachim Gudmundsson
    • 4
  • John Iacono
    • 1
  • Stefan Langerman
    • 5
  • Michiel Smid
    • 2
  1. 1.Department of CISPolytechnic UniversityBrooklynUSA
  2. 2.School of Computer ScienceCarleton UniversityOttawaCanada
  3. 3.Computer Science and Artificial Intelligence LabMITCambridgeUSA
  4. 4.National ICT AustraliaSydneyAustralia
  5. 5.Départment d’ InformatiqueUniversité Libre de BruxellesBrusselsBelgium

Personalised recommendations