Advertisement

Concurrent Zero Knowledge Without Complexity Assumptions

  • Daniele Micciancio
  • Shien Jin Ong
  • Amit Sahai
  • Salil Vadhan
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3876)

Abstract

We provide unconditional constructions of concurrent statistical zero-knowledge proofs for a variety of non-trivial problems (not known to have probabilistic polynomial-time algorithms). The problems include Graph Isomorphism, Graph Nonisomorphism, Quadratic Residuosity, Quadratic Nonresiduosity, a restricted version of Statistical Difference, and approximate versions of the (coNP forms of the) Shortest Vector Problem and Closest Vector Problem in lattices.

For some of the problems, such as Graph Isomorphism and Quadratic Residuosity, the proof systems have provers that can be implemented in polynomial time (given an NP witness) and have Õ(log n) rounds, which is known to be essentially optimal for black-box simulation.

To the best of our knowledge, these are the first constructions of concurrent zero-knowledge proofs in the plain, asynchronous model (i.e., without setup or timing assumptions) that do not require complexity assumptions (such as the existence of one-way functions).

Keywords

Proof System Graph Isomorphism Commitment Scheme Complexity Assumption Zero Knowledge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Micciancio, D., Ong, S.J., Sahai, A., Vadhan, S.: Concurrent zero knowledge without complexity assumptions. Technical Report 05-093, Electronic Colloquium on Computational Complexity (2005), http://eccc.uni-trier.de/eccc-reports/2005/TR05-093/
  2. 2.
    Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM Journal on Computing 18(1), 186–208 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Goldreich, O., Krawczyk, H.: On the composition of zero-knowledge proof systems. SIAM Journal on Computing 25(1), 169–192 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. In: Proc. 30th STOC, pp. 409–418 (1998)Google Scholar
  5. 5.
    Goldreich, O., Micali, S., Wigderson, A.: Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems. Journal of the ACM 38(1), 691–729 (1991)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Goldreich, O.: Foundations of cryptography, vol. 1. Cambridge University Press, Cambridge, UK (2001)CrossRefzbMATHGoogle Scholar
  7. 7.
    Goldreich, O.: Zero-knowledge twenty years after its invention (2002), http://www.wisdom.weizmann.ac.il/~oded/zk-tut02.html
  8. 8.
    Yao, A.C.: How to generate and exchange secrets. In: Proc. 27th FOCS, pp. 162–167 (1986)Google Scholar
  9. 9.
    Naor, M., Yung, M.: Public-key cryptosystems provably secure against chosen ciphertext attack. In: Proc. 22nd STOC, pp. 427–437 (1990)Google Scholar
  10. 10.
    Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM Journal on Computing 30(2), 391–437 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosenciphertext security. In: Proc. 40th FOCS, pp. 543–553 (1999)Google Scholar
  12. 12.
    Feige, U., Fiat, A., Shamir, A.: Zero-knowledge proofs of identity. Journal of Cryptology 1(2), 77–94 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Cramer, R., Shoup, V.: A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  14. 14.
    Elkind, E., Sahai, A.: A unified methodology for constructing public-key encryption schemes secure against adaptive chosen-ciphertext attack. Cryptology ePrint Archive, Report 2002/042 (2002), http://eprint.iacr.org/
  15. 15.
    Cramer, R., Shoup, V.: Design and analysis of practical public-key encryption schemes secure against adaptive chosen ciphertext attack. SIAM Journal on Computing 33(1), 167–226 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Gennaro, R., Micciancio, D., Rabin, T.: An efficient non-interactive statistical zero-knowledge proof system for quasi-safe prime products. In: Proc. of the 5th ACM Conference on Computer and Communications Security, pp. 67–72 (1998)Google Scholar
  17. 17.
    Okamoto, T.: On relationships between statistical zero-knowledge proofs. Journal of Computer and System Sciences 60(1), 47–108 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Goldreich, O., Sahai, A., Vadhan, S.: Honest-verifier statistical zero-knowledge equals general statistical zero-knowledge. In: Proc. 30th STOC, pp. 399–408 (1998)Google Scholar
  19. 19.
    Vadhan, S.: An unconditional study of computational zero knowledge. In: Proc. 45th STOC, pp. 176–185 (2004)Google Scholar
  20. 20.
    Ostrovsky, R.: One-way functions, hard on average problems, and statistical zeroknowledge proofs. In: Proceedings of the Sixth Annual Structure in Complexity Theory Conference (1991)Google Scholar
  21. 21.
    Ostrovsky, R., Wigderson, A.: One-way functions are essential for non-trivial zeroknowledge. In: Second Israel Symposium on Theory of Computing Systems, pp. 3–17 (1993)Google Scholar
  22. 22.
    Feige, U.: Alternative models for zero knowledge interactive proofs. PhD thesis, Weizmann Institute of Science, Israel (1990)Google Scholar
  23. 23.
    Richardson, R., Kilian, J.: On the concurrent composition of zero-knowledge proofs. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 415–431. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  24. 24.
    Kilian, J., Petrank, E., Rackoff, C.: Lower bounds for zero knowledge on the Internet. In: Proc. 39th FOCS, pp. 484–492 (1998)Google Scholar
  25. 25.
    Kilian, J., Petrank, E.: Concurrent and resettable zero-knowledge in poly-logarithm rounds. In: Proc. 33rd STOC, pp. 560–569 (2001)Google Scholar
  26. 26.
    Rosen, A.: A note on the round-complexity of concurrent zero-knowledge. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 451–468. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  27. 27.
    Canetti, R., Kilian, J., Petrank, E., Rosen, R.: Black-box concurrent zeroknowledge requires (almost) logarithmically many rounds. SIAM Journal on Computing 32(1), 1–47 (2003)CrossRefzbMATHGoogle Scholar
  28. 28.
    Prabhakaran, M., Rosen, A., Sahai, A.: Concurrent zero knowledge with logarithmic round-complexity. In: Proc. 43rd FOCS, pp. 366–375 (2002)Google Scholar
  29. 29.
    Barak, B.: How to go beyond the black-box simulation barrier. In: Proc. 42nd FOCS, pp. 106–115 (2001)Google Scholar
  30. 30.
    Di Crescenzo, G.: Removing complexity assumptions from concurrent zero-knowledge proofs. In: Du, D.-Z., Eades, P., Sharma, A.K., Lin, X., Estivill-Castro, V. (eds.) COCOON 2000. LNCS, vol. 1858, pp. 426–435. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  31. 31.
    Micciancio, D., Petrank, E.: Simulatable commitments and efficient concurrent zero-knowledge. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 140–159. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  32. 32.
    Brassard, G., Chaum, D., Crepeau, C.: Minimum disclosure proofs of knowledge. Journal of Computer and System Sciences 37(2), 156–189 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Sahai, A., Vadhan, S.: A complete problem for statistical zero knowledge. Journal of the ACM 50(2) (2003)Google Scholar
  34. 34.
    Micciancio, D., Vadhan, S.: Statistical zero-knowledge proofs with efficient provers: Lattice problems and more. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 282–298. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  35. 35.
    Bellare, M., Micali, S., Ostrovsky, R.: Perfect zero-knowledge in constant rounds. In: Proc. 22nd STOC, pp. 482–493 (1990)Google Scholar
  36. 36.
    Itoh, T., Ohta, Y., Shizuya, H.: A language-dependent cryptographic primitive. Journal of Cryptology 10(1), 37–49 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Rosen, A.: The Round-Complexity of Black-Box Concurrent Zero-Knowledge. PhD thesis, Weizmann Institute of Science, Israel (2003)Google Scholar
  38. 38.
    Chase, M., Healy, A., Lysyanskaya, A., Malkin, T., Reyzin, L.: Mercurial commitments with applications to zero-knowledge sets. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 422–439. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  39. 39.
    Micali, S., Rabin, M.O., Kilian, J.: Zero-knowledge sets. In: Proc. 44th FOCS, pp. 80–91 (2003)Google Scholar
  40. 40.
    Naor, M.: Bit commitment using pseudorandomness. Journal of Cryptology 4(2), 151–158 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Hastad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM Journal on Computing 28(4), 1364–1396 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Goldreich, O., Goldwasser, S.: On the limits of nonapproximability of lattice problems. Journal of Computer and System Sciences 60(3), 540–563 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Blum, M., De Santis, A., Micali, S., Persiano, G.: Noninteractive zero-knowledge. SIAM Journal on Computing 20(6), 1084–1118 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Aharonov, D., Regev, O.: Lattice problems in NP ∩ coNP. In: Proc. 45th FOCS, pp. 362–371 (2004)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Daniele Micciancio
    • 1
  • Shien Jin Ong
    • 2
  • Amit Sahai
    • 3
  • Salil Vadhan
    • 2
  1. 1.University of CaliforniaSan Diego, La JollaUSA
  2. 2.Harvard UniversityCambridgeUSA
  3. 3.University of CaliforniaLos AngelesUSA

Personalised recommendations