Advertisement

2D Motion Description and Contextual Motion Analysis: Issues and New Models

  • P. Bouthemy
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3667)

Abstract

In this paper, several important issues related to visual motion analysis are addressed with a focus on the type of motion information to be estimated and the way contextual information is expressed and exploited. Assumptions (i.e., data models) must be formulated to relate the observed image intensities with motion, and other constraints (i.e., motion models) must be added to solve problems like motion segmentation, optical flow computation, or motion recognition. The motion models are supposed to capture known, expected or learned properties of the motion field, and this implies to somehow introduce spatial coherence or more generally contextual information. The latter can be formalized in a probabilistic way with local conditional densities as in Markov models. It can also rely on predefined spatial supports (e.g., blocks or pre-segmented regions). The classic mathematical expressions associated with the visual motion information are of two types. Some are continuous variables to represent velocity vectors or parametric motion models. The other are discrete variables or symbolic labels to code motion detection output (binary labels) or motion segmentation output (numbers of the motion regions or layers). We introduce new models, called mixed-state auto-models, whose variables belong to a domain formed by the union of discrete and continuous values, and which include local spatial contextual information. We describe how such models can be specified and exploited in the motion recognition problem. Finally, we present a new way of investigating the motion detection problem with spatial coherence being associated to a perceptual grouping principle.

Keywords

Motion Model Motion Detection Camera Motion Motion Information Spatial Coherence 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Aach, T., Kaup, A.: Bayesian algorithms for change detection in image sequences using Markov random fields. Signal Processing: Image Communication 7(2), 147–160 (1995)CrossRefGoogle Scholar
  2. 2.
    Alvarez, L., Weickert, J., Sánchez, J.: Reliable estimation of dense optical flow fields with large displacements. International Journal of Computer Vision 39(1), 41–56 (2000)zbMATHCrossRefGoogle Scholar
  3. 3.
    Besag, J.: Spatial interactions and the statistical analysis of lattice systems. Journal Royal Statistical Society, B 148, 1–36 (1974)Google Scholar
  4. 4.
    Bigün, J., Granlund, G.H., Wiklund, J.: Multidimensional orientation estimation with applications to texture analysis and optical flow. IEEE Trans. on Pattern Analysis and Machine Intelligence 13(8), 775–790 (1991)CrossRefGoogle Scholar
  5. 5.
    Black, M.J., Anandan, P.: The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields. Computer Vision and Image Understanding 63(1), 75–104 (1996)CrossRefGoogle Scholar
  6. 6.
    Black, M.J., Jepson, A.D.: Estimating optical flow in segmented images using variable-order parametric models with local deformations. IEEE Trans. on Pattern Analysis and Machine Intelligence 18(10), 972–986 (1996)CrossRefGoogle Scholar
  7. 7.
    Bouthemy, P., François, E.: Motion segmentation and qualitative dynamic scene analysis from an image sequence. Int. Journal of Computer Vision 10(2), 157–182 (1993)CrossRefGoogle Scholar
  8. 8.
    Cohen, I., Herlin, I.: Non uniform multiresolution method for optical flow and phase portrait models: Environmental application. IJCV 33(1), 29–49 (1999)CrossRefGoogle Scholar
  9. 9.
    Corpetti, T., Mémin, E., Pérez, P.: Dense estimation of fluid flows. IEEE Trans. on Pattern Analysis and Machine Intelligence 24(3), 365–380 (2002)CrossRefGoogle Scholar
  10. 10.
    Cremers, D., Kohlberger, T., Schnörr, C.: Nonlinear Shape Statistics in Mumford-Shah Based Segmentation. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2351, pp. 93–108. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Cremers, D., Soatto, S.: Variational space-time motion segmentation. In: Proc. 9th IEEE Int. Conf. on Computer Vision, ICCV 2003, Nice (October 2003)Google Scholar
  12. 12.
    Desolneux, A., Moisan, L., Morel, J.-M.: A grouping principle and four applications. IEEE Trans. on Pattern Analysis and Machine Intelligence 25(4), 508–513 (2003)CrossRefGoogle Scholar
  13. 13.
    Fablet, R., Bouthemy, P.: Non-parametric scene activity analysis for statistical retrieval with partial query. Journal of Mathematical Imaging and Vision 14(3), 257–270 (2001)zbMATHCrossRefGoogle Scholar
  14. 14.
    Fablet, R., Bouthemy, P., Pérez, P.: Non-parametric motion characterization using causal probabilistic models for video indexing and retrieval. IEEE Trans. on Image Processing 11(4), 393–407 (2002)CrossRefGoogle Scholar
  15. 15.
    Fablet, R., Bouthemy, P.: Motion recognition using non parametric image motion models estimated from temporal and multiscale cooccurrence statistics. IEEE Trans. on Pattern Analysis and Machine Intelligence 25(12), 1619–1624 (2003)CrossRefGoogle Scholar
  16. 16.
    Fleet, D.J., Jepson, A.D.: Computation of component image velocity from local phase information. International Journal of Computer Vision 5(1), 77–104 (1990)CrossRefGoogle Scholar
  17. 17.
    Gelgon, M., Bouthemy, P.: A region-level motion-based graph representation and labeling for tracking a spatial image partition. Pattern Recognition 33(4), 725–745 (2000)CrossRefGoogle Scholar
  18. 18.
    Guyon, X., Hardouin, C., Yao, J.-F.: Markovian auto-models with mixed states (preprint, 2004)Google Scholar
  19. 19.
    Haussecker, H.W., Fleet, D.J.: Estimating optical flow with physical models of brightness variation. IEEE Trans. on Pattern Analysis and Machine Intelligence 23(6), 661–673 (2001)CrossRefGoogle Scholar
  20. 20.
    Heitz, F., Bouthemy, P.: Multimodal estimation of discontinuous optical flow using Markov random fields. IEEE Trans. on PAMI 15(12), 1217–1232 (1993)Google Scholar
  21. 21.
    Heitz, F., Pérez, P., Bouthemy, P.: Multiscale minimization of global energy functions in some visual recovery problems. CVGIP: Image Understanding 59(1), 125–134 (1994)CrossRefGoogle Scholar
  22. 22.
    Horn, B.K.P., Schunck, B.G.: Determing optical flow. Art. Intelligence 17, 185–203 (1981)CrossRefGoogle Scholar
  23. 23.
    Irani, M., Rousso, B., Peleg, S.: Computing occluding and transparent motion. International Journal of Computer Vision 12(1), 5–16 (1994)CrossRefGoogle Scholar
  24. 24.
    Konrad, J.: Motion detection and estimation. In: Bovik, A.C. (ed.) Handbook of Image and Video Processing, Academic Press, London (2000)Google Scholar
  25. 25.
    Kornprobst, P., Deriche, R., Aubert, G.: Image sequence analysis via partial differential equations. Journal of Mathematical Imaging and Vision 11(1), 5–26 (1999)CrossRefMathSciNetGoogle Scholar
  26. 26.
    Mansouri, A.-R., Konrad, J.: Multiple motion segmentation with level sets. IEEE Trans. Image Processing 12, 201–220 (2003)CrossRefGoogle Scholar
  27. 27.
    Marroquin, J.-L., Santana, E.A., Botello, S.: Hidden Markov measure field models for image segmentation. IEEE Trans. on PAMI 25(11), 1380–1387 (2003)Google Scholar
  28. 28.
    Mémin, E., Pérez, P.: Optical flow estimation and object-based segmentation with robust techniques. IEEE Trans. on Image Processing 7(5), 703–719 (1998)CrossRefGoogle Scholar
  29. 29.
    Mémin, E., Pérez, P.: Hierarchical estimation and segmentation of dense motion fields. Int. Journal of Computer Vision 46(2), 129–155 (2002)zbMATHCrossRefGoogle Scholar
  30. 30.
    Mitiche, A., Bouthemy, P.: Computation and analysis of image motion: A synopsis of current problems and methods. International Journal of Computer Vision 19(1), 29–55 (1996)CrossRefGoogle Scholar
  31. 31.
    Murray, D.W., Buxton, B.F.: Scene segmentation from visual motion using global optimization. IEEE Trans. on Pattern Analysis and Machine Intelligence 9(2), 220–228 (1987)CrossRefGoogle Scholar
  32. 32.
    Nagel, H.-H.: On the estimation of optic flow: Relations between different approaches and some new results. Artificial Intelligence 33, 299–324 (1987)CrossRefGoogle Scholar
  33. 33.
    Nagel, H.-H., Gehrke, A.: Spatiotemporally Adaptive Estimation and Segmentation of OF-fields. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, Springer, Heidelberg (1998)CrossRefGoogle Scholar
  34. 34.
    Nicolescu, M., Medioni, G.: Layered 4D representation and voting for grouping from motion. IEEE Trans. on Pattern Analysis and Machine Intelligence 25(4), 492–501 (2003)CrossRefGoogle Scholar
  35. 35.
    Odobez, J.-M., Bouthemy, P.: Robust multiresolution estimation of parametric motion models. Journal of Visual Communication and Image Representation 6(4), 348–365 (1995)CrossRefGoogle Scholar
  36. 36.
    Odobez, J.M., Bouthemy, P.: Separation of moving regions from background in an image sequence acquired with a mobile camera. In: Li, H.H., Sun, S., Derin, H. (eds.) Video Data Compression for Multimedia Computing, ch.8, pp. 283–311. Kluwer, Dordrecht (1997)Google Scholar
  37. 37.
    Odobez, J.-M., Bouthemy, P.: Direct incremental model-based image motion segmentation for video analysis. Signal Processing 6(2), 143–155 (1998)CrossRefGoogle Scholar
  38. 38.
    Papin, C., Bouthemy, P., Mémin, E., Rochard, G.: Tracking and Characterization of Highly Deformable Cloud Structures. In: Vernon, D. (ed.) ECCV 2000. LNCS, vol. 1843, pp. 428–442. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  39. 39.
    Paragios, N., Deriche, R.: Geodesic active contours and level sets for the detection and tracking of moving objects. IEEE Trans. on PAMI 22(3), 266–280 (2000)Google Scholar
  40. 40.
    Piriou, G., Bouthemy, P., Yao, J.-F.: Extraction of semantic dynamic content from videos with probabilistic motion models. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3021, Springer, Heidelberg (2004)Google Scholar
  41. 41.
    Sawhney, H.S., Ayer Compact, S.: representations of videos through dominant and multiple motion estimation. IEEE Trans. on PAMI 18(8), 814–830 (1996)Google Scholar
  42. 42.
    Smith, P., Drummond, T., Cipolla, R.: Layered motion segmentation and depth ordering by tracking edges. IEEE Trans. on PAMI 26(4), 479–494 (2004)Google Scholar
  43. 43.
    Stiller, C., Konrad, J.: Estimating motion in image sequences (A tutorial on modeling and computation of 2D motion). IEEE Signal Processing Magazine 16, 70–91 (1999)CrossRefGoogle Scholar
  44. 44.
    Veit, T., Cao, F., Bouthemy, P.: Probabilistic parameter-free motion detection. In: IEEE Conf. Computer Vision and Pattern Recognition, CVPR 2004, Washington DC (June 2004)Google Scholar
  45. 45.
    Wang, Y., Zhu, S.-C.: Modeling textured motion: Particle, wave and sketch. In: IEEE Int. Conf. on Computer Vision, ICCV 2003, Nice (October 2003)Google Scholar
  46. 46.
    Weickert, J., Bruhn, A., Papenberg, N., Brox, T.: Variational optic flow computation: From continuous models to algorithms. In: Alvarez, L. (ed.) International Workshop on Computer Vision and Image Analysis, IWCVIA 2003, Las Palmas de Gran Canaria (December 2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • P. Bouthemy
    • 1
  1. 1.IRISA / INRIARennesFrance

Personalised recommendations