Evaluating Monotone Circuits on Cylinders, Planes and Tori

  • Nutan Limaye
  • Meena Mahajan
  • M. N. Jayalal Sarma
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3884)


We revisit monotone planar circuits MPCVP, with special attention to circuits with cylindrical embeddings. MPCVP is known to be in NC 3 in general, and in LogDCFL for the special case of upward stratified circuits. We characterize cylindricality, which is stronger than planarity but strictly generalizes upward planarity, and make the characterization partially constructive. We use this construction, and four key reduction lemmas, to obtain several improvements. We show that monotone circuits with embeddings that are stratified cylindrical, cylindrical, planar one-input-face and focused can be evaluated in LogDCFL, AC 1(LogDCFL), LogCFL and AC 1(LogDCFL) respectively. We note that the NC 3 algorithm for general MPCVP is in AC 1(LogCFL) = SAC 2. Finally, we show that monotone circuits with toroidal embeddings can, given such an embedding, be evaluated in NC.


Source Node Outgoing Edge Generalize Circuit Incoming Edge Span Subgraph 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Allender, E., Datta, S., Roy, S.: The directed planar reachability problem. In: Ramanujam, R., Sen, S. (eds.) FSTTCS 2005. LNCS, vol. 3821, pp. 238–249. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  2. 2.
    Allender, E., Datta, S., Roy, S.: Topology inside NC1. In: Proc. 20th IEEE Conference on Computational Complexity, pp. 298–307 (2005)Google Scholar
  3. 3.
    Allender, E., Mahajan, M.: The complexity of planarity testing. Information and Computation 189(1), 117–134 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Mix Barrington, D.A., Lu, C.-J., Bro Miltersen, P., Skyum, S.: On monotone planar circuits. In: IEEE Conf. Computational Complexity, pp. 24–31 (1999)Google Scholar
  5. 5.
    Di Battista, G., Tamassia, R.: Algorithms for plane representations of acyclic digraphs. Theoretical Computer Science 61, 175–198 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Delcher, A.L., Kosaraju, S.R.: An NC algorithm for evaluating monotone planar circuits. SIAM Journal of Computing 24(2), 369–375 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dymond, P.W., Cook, S.A.: Complexity Theory of Parallel Time and Hardware. Information and Computation 80(3), 205–226 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Goldschlager, L.M.: The monotone and planar circuit value problems are logspace complete for P. SIGACT News 9(2), 25–29 (1977)CrossRefGoogle Scholar
  9. 9.
    Goldschlager, L.M.: A space efficient algorithm for the monotone planar circuit value problem. Information Processing Letters 10(1), 25–27 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hansen, K.: Constant width planar computation characterizes ACC0. In: Diekert, V., Habib, M. (eds.) STACS 2004. LNCS, vol. 2996, pp. 44–55. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Hansen, K., Bro Miltersen, P., Vinay, V.: Circuits on cylinders. In: Lingas, A., Nilsson, B.J. (eds.) FCT 2003. LNCS, vol. 2751, pp. 171–182. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  12. 12.
    Kelly, D.: Fundamentals of planar ordered sets. Discrete Mathematics 63(2,3), 197–216 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Kosaraju, S.R.: On the parallel evaluation of classes of circuits. In: Veni Madhavan, C.E., Nori, K.V. (eds.) FSTTCS 1990. LNCS, vol. 472, pp. 232–237. Springer, Heidelberg (1990)CrossRefGoogle Scholar
  14. 14.
    Miller, G.L., Ramachandran, V., Kaltofen, E.: Efficient parallel evaluation of straight-line code and arithmetic circuits. SIAM Jl. Computing 17, 687–695 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Mohar, B., Thomassen, C.: Graphs on Surfaces. John Hopkins Univ. Press (2001)Google Scholar
  16. 16.
    Ramachandran, V., Reif, J.: Planarity testing in parallel. Journal of Computer and System Sciences 49, 517–561 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Reingold, O.: Undirected st-conenctivity in logspace. In: Proc. 37th STOC, pp. 376–385 (2005)Google Scholar
  18. 18.
    Tamassia, R., Tollis, I.G.: A unified approach to visibility representations of planar graphs. Discrete and Computational Geometry 1(1), 312–341 (1986)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Tamassia, R., Tollis, I.G.: Tessellation representations of planar graphs. In: Proc. 27th Allerton Conf. Commun., Control & Computing, UIUC, pp. 48–57 (1989)Google Scholar
  20. 20.
    Venkateswaran, H.: Properties that characterize LogCFL. Journal of Computer and System Sciences 42, 380–404 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Vollmer, H.: Introduction to Circuit Complexity: A Uniform Approach. Springer, Heidelberg (1999)CrossRefzbMATHGoogle Scholar
  22. 22.
    White, A.T.: Graphs, Groups and Surfaces. North-Holland, Amsterdam (1973)zbMATHGoogle Scholar
  23. 23.
    Yang, H.: An NC algorithm for the general planar monotone circuit value problem. In: Proc. 3rd IEEE Symp. Parallel & Distributed Processing, pp. 196–203 (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Nutan Limaye
    • 1
  • Meena Mahajan
    • 1
  • M. N. Jayalal Sarma
    • 1
  1. 1.The Institute of Mathematical SciencesChennaiIndia

Personalised recommendations