Advertisement

Regularity Problems for Visibly Pushdown Languages

  • Vince Bárány
  • Christof Löding
  • Olivier Serre
Part of the Lecture Notes in Computer Science book series (LNCS, volume 3884)

Abstract

Visibly pushdown automata are special pushdown automata whose stack behavior is driven by the input symbols according to a partition of the alphabet. We show that it is decidable for a given visibly pushdown automaton whether it is equivalent to a visibly counter automaton, i.e. an automaton that uses its stack only as counter. In particular, this allows to decide whether a given visibly pushdown language is a regular restriction of the set of well-matched words, meaning that the language can be accepted by a finite automaton if only well-matched words are considered as input.

Keywords

Regular Language Tree Language Context Free Language Regularity Problem Pushdown Automaton 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Etessami, K., Madhusudan, P.: A temporal logic of nested calls and returns. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 467–481. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  2. 2.
    Alur, R., Madhusudan, P.: Visibly pushdown languages. In: Proceedings of STOC 2004, pp. 202–211. ACM, New York (2004)Google Scholar
  3. 3.
    Alur, R., Madhusudan, P., Kumar, V., Viswanatha, M.: Congruences for visibly pushdown languages. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1102–1114. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Andraşiu, M., Păun, G., Dassow, J., Salomaa, A.: Language-theoretic problems arising from Richelieu cryptosystems. Theor. Comp. Sci. 116(2), 339–357 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Berstel, J., Boasson, L.: Formal properties of XML grammars and languages. Acta Informatica 38(9), 649–671 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bouajjani, A., Esparza, J., Maler, O.: Reachability analysis of pushdown automata: Application to model-checking. In: Mazurkiewicz, A., Winkowski, J. (eds.) CONCUR 1997. LNCS, vol. 1243, pp. 135–150. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  7. 7.
    Büchi, J.R.: Regular canonical systems. Archiv für Mathematische Grundlagenforschung 6, 91–111 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Esparza, J., Hansel, D., Rossmanith, P., Schwoon, S.: Efficient algorithms for model checking pushdown systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV 2000. LNCS, vol. 1855, pp. 232–247. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Frougny, C., Sakarovitch, J.: Synchronized rational relations of finite and infinite words. Theoretical Computer Science 108(1), 45–82 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hopcroft, J.E., Ullman, J.D.: Formal Languages and their Relation to Automata. Addison-Wesley, Reading (1969)zbMATHGoogle Scholar
  11. 11.
    Löding, C., Madhusudan, P., Serre, O.: Visibly pushdown games. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 408–420. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Pitcher, C.: Visibly pushdown expression effects for XML stream processing. In: Programming Language Technologies for XML, PLAN-X 2005, pp. 5–19 (2005)Google Scholar
  13. 13.
    Păun, G., Salomaa, A.: Thin and slender languages. Discrete Applied Mathematics 61(3), 257–270 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Segoufin, L., Vianu, V.: Validating streaming XML documents. In: Proceedings of PODS 2002, pp. 53–64. ACM, New York (2002)Google Scholar
  15. 15.
    Stearns, R.E.: A regularity test for pushdown machines. Information and Control 11(3), 323–340 (1967)CrossRefzbMATHGoogle Scholar
  16. 16.
    Valiant, L.G.: Regularity and related problems for deterministic pushdown automata. Journal of the ACM 22(1), 1–10 (1975)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2006

Authors and Affiliations

  • Vince Bárány
    • 1
  • Christof Löding
    • 1
  • Olivier Serre
    • 2
  1. 1.RWTH AachenGermany
  2. 2.LIAFA, Université Paris VII & CNRSFrance

Personalised recommendations